
pymonetdb Documentation
Release 1.7.1

Gijs Molenaar

Sep 22, 2023

Contents

1 Contents 3
1.1 Getting Started . 3
1.2 Examples . 4
1.3 File Transfers . 6
1.4 Result set batch size . 8
1.5 API . 9
1.6 Development . 21

2 Indices and tables 25

Python Module Index 27

Index 29

i

ii

pymonetdb Documentation, Release 1.7.1

pymonetdb is the native Python client API for monetDB. It is cross-platform and does not depend on any MonetDB
libraries. It supports Python 3.6+ and PyPy and is Python DBAPI 2.0 compatible.

Besides the functionality required by DBAPI 2.0, pymonetdb also provides some MonetDB-specific functionality, in
particular file transfers. These are detailed in the API section.

Contents 1

https://peps.python.org/pep-0249/

pymonetdb Documentation, Release 1.7.1

2 Contents

CHAPTER 1

Contents

1.1 Getting Started

1.1.1 Installation

pymonetdb is available on PyPI and can be installed with the following command:

$ pip install pymonetdb

It can also be installed from its source directory by running:

$ python setup.py install

1.1.2 Connecting

In its simplest form, the function pymonetdb.connect() takes a single parameter, the database name:

conn = pymonetdb.connect('demo')

Usually, you have to pass more:

conn = pymonetdb.connect(
'demo',
hostname='dbhost', port=50001,
username='yours', password='truly')

There are also some options you can set, for example autocommit=True.

It is also possible to combine everything in a URL:

url = 'mapi:monetdb://yours:truly@dbhost:50001/demo?autocommit=true'
conn = pymonetdb.connect(url)

3

pymonetdb Documentation, Release 1.7.1

For more details see the documentation of pymonetdb.connect().

1.2 Examples

Here are some examples of how to use pymonetdb.

1.2.1 Example session

> # import the SQL module
> import pymonetdb
>
> # set up a connection. arguments below are the defaults
> connection = pymonetdb.connect(username="monetdb", password="monetdb",
> hostname="localhost", database="demo")
>
> # create a cursor
> cursor = connection.cursor()
>
> # increase the rows fetched to increase performance (optional)
> cursor.arraysize = 100
>
> # execute a query (return the number of rows to fetch)
> cursor.execute('SELECT * FROM tables')
26
>
> # fetch only one row
> cursor.fetchone()
[1062, 'schemas', 1061, None, 0, True, 0, 0]
>
> # fetch the remaining rows
> cursor.fetchall()
[[1067, 'types', 1061, None, 0, True, 0, 0],
[1076, 'functions', 1061, None, 0, True, 0, 0],
[1085, 'args', 1061, None, 0, True, 0, 0],
[1093, 'sequences', 1061, None, 0, True, 0, 0],
[1103, 'dependencies', 1061, None, 0, True, 0, 0],
[1107, 'connections', 1061, None, 0, True, 0, 0],
[1116, '_tables', 1061, None, 0, True, 0, 0],
...
[4141, 'user_role', 1061, None, 0, True, 0, 0],
[4144, 'auths', 1061, None, 0, True, 0, 0],
[4148, 'privileges', 1061, None, 0, True, 0, 0]]

>
> # Show the table meta data
> cursor.description
[('id', 'int', 4, 4, None, None, None),
('name', 'varchar', 12, 12, None, None, None),
('schema_id', 'int', 4, 4, None, None, None),
('query', 'varchar', 168, 168, None, None, None),
('type', 'smallint', 1, 1, None, None, None),
('system', 'boolean', 5, 5, None, None, None),
('commit_action', 'smallint', 1, 1, None, None, None),
('temporary', 'tinyint', 1, 1, None, None, None)]

4 Chapter 1. Contents

pymonetdb Documentation, Release 1.7.1

1.2.2 MAPI Connection

If you would like to communicate with the database at a lower level you can use the MAPI library (but not recom-
mended):

> from pymonetdb import mapi
> server = mapi.Connection()
> server.connect(hostname="localhost", port=50000, username="monetdb",

password="monetdb", database="demo", language="sql")
> server.cmd("sSELECT * FROM tables;")
...

1.2.3 CSV Upload

This is an example script that uploads some CSV data from the local file system:

#!/usr/bin/env python3

import os
import pymonetdb

Create the data directory and the CSV file
try:

os.mkdir("datadir")
except FileExistsError:

pass
with open("datadir/data.csv", "w") as f:

for i in range(10):
print(f"{i},item{i + 1}", file=f)

Connect to MonetDB and register the upload handler
conn = pymonetdb.connect('demo')
handler = pymonetdb.SafeDirectoryHandler("datadir")
conn.set_uploader(handler)
cursor = conn.cursor()

Set up the table
cursor.execute("DROP TABLE foo")
cursor.execute("CREATE TABLE foo(i INT, t TEXT)")

Upload the data, this will ask the handler to upload data.csv
cursor.execute("COPY INTO foo FROM 'data.csv' ON CLIENT USING DELIMITERS ','")

Check that it has loaded
cursor.execute("SELECT t FROM foo WHERE i = 9")
row = cursor.fetchone()
assert row[0] == 'item10'

Goodbye
conn.commit()
cursor.close()
conn.close()

1.2. Examples 5

pymonetdb Documentation, Release 1.7.1

1.3 File Transfers

MonetDB supports the non-standard COPY INTO statement to load a CSV-like text file into a table or to dump a table
into a text file. This statement has an optional modifier ON CLIENT to indicate that the server should not try to open
the file on the server side but instead ask the client to open it on its behalf.

For example:

COPY INTO mytable FROM 'data.csv' ON CLIENT
USING DELIMITERS ',', E'\n', '"';

However, by default, if pymonetdb receives a file request from the server, it will refuse it for security considerations.
You do not want an unauthorised party pretending to be the server to be able to request arbitrary files on your system
and even overwrite them.

To enable file transfers, create a pymonetdb.Uploader or pymonetdb.Downloader and register them with your connec-
tion:

transfer_handler = pymonetdb.SafeDirectoryHandler(datadir)
conn.set_uploader(transfer_handler)
conn.set_downloader(transfer_handler)

With this in place, the COPY INTO ... ON CLIENT statement above will cause pymonetdb to open the file
data.csv in the given datadir and upload its contents. As its name suggests, SafeDirectoryHandler will only
allow access to the files in that directory.

Note that in this example, we register the same handler object as an uploader and a downloader for demonstration
purposes. In the real world, it is good security practice only to register an uploader or a downloader It is also possible
to use two separate handlers.

See the API documentation for details.

1.3.1 Make up data as you go

You can also write your own transfer handlers. And instead of opening a file, such handlers can make up the data on
the fly, for instance, retrieve it from a remote microservice, prompt the user interactively or do whatever else you come
up with:

class MyUploader(pymonetdb.Uploader):
def handle_upload(self, upload, filename, text_mode, skip_amount):

tw = upload.text_writer()
for i in range(skip_amount, 1000):

print(f'{i},number{i}', file=tw)

In this example, we call upload.text_writer() to yield a text-mode file-like object. There is also an up-
load.binary_writer(), which creates a binary-mode file-like object. The binary_writer() works even if the server
requests a text mode object, but in that case, you have to make sure the bytes you write are valid UTF-8 and delimited
with Unix line endings rather than Windows line endings.

If you want to refuse an upload or download, call upload.send_error() to send an error message before any call to
text_writer() or binary_writer().

For custom downloaders, the situation is similar, except that instead of text_writer and binary_writer, the download
parameter offers download.text_reader() and download.text_writer().

6 Chapter 1. Contents

pymonetdb Documentation, Release 1.7.1

1.3.2 Skip amount

MonetDB’s COPY INTO statement allows you to skip, for example, the first line in a file using the modifier OFFSET
2. In such a case, the skip_amount parameter to handle_upload() will be greater than zero.

Note that the offset in the SQL statement is 1-based, whereas the skip_amount parameter has already been converted
to 0-based. The example above thus allows us to write for i in range(skip_amount, 1000): rather than
for i in range(1000):.

1.3.3 Cancellation

In cases depicted by the following query, the server does not need to receive all data of the input file:

COPY 100 RECORDS INTO mytable FROM ‘data.csv’ ON CLIENT

Therefore, pymonetdb regularly asks the server if it is still interested in receiving more data. In this way, the server
can cancel the uploading after it has received sufficient data to process the query. By default, pymonetdb does this
after every MiB of data, but you can change this frequency using upload.set_chunk_size().

If the server answers that it is no longer interested, pymonetdb will discard any further data written to the writer.
It is recommended to call upload.is_cancelled() occasionally to check for this and exit early if the upload has been
cancelled.

Upload handlers also have an optional method cancel() that you can override. This method is called when pymonetdb
receives the cancellation request.

1.3.4 Copying data from or to a file-like object

If you are moving large amounts of data between pymonetdb and a file-like object such as a file, Python’s copyfileobj
function may come in handy:

class MyUploader(pymonetdb.Uploader):
def __init__(self, dir):

self.dir = pathlib.Path(dir)

def handle_upload(self, upload, filename, text_mode, skip_amount):
security check
path = self.dir.joinpath(filename).resolve()
if not str(path).startswith(str(self.dir.resolve())):

return upload.send_error('Forbidden')
open
tw = upload.text_writer()
with open(path) as f:

skip
for i in range(skip_amount):

f.readline()
bulk upload
shutil.copyfileobj(f, tw)

However, note that copyfileobj does not handle cancellations as described above.

1.3.5 Security considerations

If your handler accesses the file system or the network, it is critical to validate the file name you are given carefully.
Otherwise, an attacker can take over the server or the connection to the server and cause great damage.

1.3. File Transfers 7

https://docs.python.org/3/library/shutil.html#shutil.copyfileobj
https://docs.python.org/3/library/shutil.html#shutil.copyfileobj

pymonetdb Documentation, Release 1.7.1

The code sample above also includes an example of validating file systems paths. Similar considerations apply to text
inserted into network URLs and other resource identifiers.

1.4 Result set batch size

When a query produces a large result set, pymonetdb will often only retrieve part of the result set, retrieving the
rest later, one batch at a time. The default behavior is to start with a reasonably small batch size but increase it
rapidly. However, if necessary, the application can configure this behavior. In the table below, you can see the settings
controlling the behavior of large transfers.

Setting name Defined by Range Default
replysize pymonetdb positive integer or -1 [*] 100
maxprefetch pymonetdb positive integer or -1 [*] 2500
arraysize DBAPI 2.0 positive integer Connection.replysize

[*] The value -1 means unlimited.

The replysize and maxprefetch settings can be set as attributes of both Connection and Cursor. They can also be passed
as parameters in the connection URL. The arraysize setting only exists for Cursor. It defaults to the replysize of the
connection when the cursor was created if that is positive, or 100 otherwise.

1.4.1 Batching behavior

When MonetDB has finished executing a query, the server includes the first rows of the result set in its response to
Cursor.execute(). The exact number of rows it includes can be configured using the replysize setting.

How the rest of the rows are retrieved depends on how they are accessed. Cursor.fetchone() and Cursor.fetchmany()
retrieve the remaining rows in batches of increasing size. Every batch is twice as large as the previous one until the
prefetch limit maxprefetch has been reached. This setting controls the maximum number of fetched rows that are not
immediately used.

For instance, with replysize = 100, the first 100 fetchone() calls immediately return the next row from the cache.
For the 101-st fetchone(), pymonetdb will first double the replysize and retrieve rows 101-300 before returning row
101. When Cursor.fetchmany() is used, pymonetdb also adjusts the replysize to the requested stride. For example, for
fetchmany(40), the first two calls will return rows from the cache. However, for the third call, pymonetdb will first
retrieve rows 101-320, i.e. double the replysize and enlarge it to reach a multiple of 40, before returning rows 81 - 120.

With Cursor.fetchall(), all rows are retrieved at once.

1.4.2 New result set format

Version Jun2023 of MonetDB introduces a new, binary result set format that is much more efficient to parse. The
initial transfer of replysize rows still uses the existing text-based format; however, the subsequent batches can be
transferred much more efficiently with the binary format. By default, pymonetdb will automatically use it when
possible unless configured otherwise using the binary setting, e.g. pymonetdb.connect(‘demo’, binary=0) or pymon-
etdb.connect(‘mapi:monetdb://localhost/demo?binary=0’).

Normally, the binary result set transfer is transparent to the user applications. The result set fetching functions auto-
matically do the necessary data conversion. However, if you want to know explicitly if the binary format has been
used, you can use Cursor.used_binary_protocol(), e.g. after having called a fetch function.

We have implemented a special case to benefit from the binary protocol even when the replysize is set to -1. When
pymonetdb knows that binary transfers are possible (e.g. learnt when connecting with MoentDB) while replysize is -1,

8 Chapter 1. Contents

pymonetdb Documentation, Release 1.7.1

it overrides the replysize. Pymonetdb will use a small size for the initial transfer and then retrieve the rest of the result
set in one large binary batch.

1.4.3 Tweaking the behavior

Usually, the batching behavior does not need to be tweaked.

When deciding which function to use to fetch the result sets, Cursor.fetchmany() seems to be a few percent more
efficient than Cursor.fetchall(), while Cursor.fetchone() tends to be 10-15% slower.

To reduce the amount of prefetched data, set maxprefetch to a lower value or even 0. The value 0 disables prefetch
entirely, only fetching the requested rows. Setting maxprefetch to -1 has the opposite effect: it allows the prefetch size
to increase without a bound.

If you expect the size of the individual rows to be huge, consider setting both replysize and maxprefetch to small
values, for example, 10 and 20, respectively, or even 1 and 0. These small batch sizes limit the memory each batch
consumes. As a quick rule of thumb for the memory requirements, one can assume that pymonetdb may need up to
three times the size of the result set. Also, remember that if MonetDB is running on the same host, the server will also
need at least that amount of memory.

Generally, one does not need to make replysize larger than the default because it will grow rapidly. Furthermore, with
the newer versions of MonetDB and pymonetdb, it is better to keep the size of the initial response small to transfer
more data in the binary format.

1.4.4 Arraysize

The batching behavior of pymonetdb is governed mainly by replysize and maxprefetch, but the Python DBAPI also
specifies the setting arraysize. The relationship between these three is as follows:

1. The replysize and maxprefetch settings are specific to pymonetdb, while arraysize comes from the Python
DBAPI.

2. The DBAPI only uses arraysize as the default value for fetchmany() and says that it may influence the efficiency
of fetchall(). It does not mention arraysize anywhere else.

3. In pymonetdb, the batching behavior is only influenced by arraysize if fetchmany() is used without an explicit
size because then arraysize is used as the default size, and fetchmany() tries to round the batches to this size. It
has no effect on fetchall() because that always fetches everything at once.

4. The DBAPI says that the default value for the arraysize of a newly created cursor is 1. Pymonetdb deviates
from that, similar to, for example, python-oracledb. Pymonetdb uses the replysize of the connection instead. If
replysize is not a positive integer, the default is 100.

In general, all this means that arraysize needs no tweaking.

1.5 API

1.5.1 Basic SQL usage

pymonetdb.connect(*args, **kwargs)→ pymonetdb.sql.connections.Connection
Set up a connection to a MonetDB SQL database.

database (str) name of the database, or MAPI URI (see below)

hostname (str) Hostname where MonetDB is running

1.5. API 9

https://peps.python.org/pep-0249/#arraysize
https://python-oracledb.readthedocs.io/en/latest/api_manual/cursor.html#Cursor.arraysize

pymonetdb Documentation, Release 1.7.1

port (int) port to connect to (default: 50000)

username (str) username for connection (default: “monetdb”)

password (str) password for connection (default: “monetdb”)

unix_socket (str) socket to connect to. used when hostname not set (default: “/tmp/.s.monetdb.50000”)

autocommit (bool) enable/disable auto commit (default: false)

connect_timeout (int) the socket timeout while connecting

binary (int) enable binary result sets when possible if > 0 (default: 1)

replysize(int) number of rows to retrieve immediately after query execution (default: 100, -1 means everything)

maxprefetch(int) max. number of rows to prefetch during Cursor.fetchone() or Cursor.fetchmany()

MAPI URI Syntax:

tcp socket mapi:monetdb://[<username>[:<password>]@]<host>[:<port>]/<database>

unix domain socket mapi:monetdb:///[<username>[:<password>]@]path/to/socket?database=<database>

class pymonetdb.sql.connections.Connection(database, hostname=None, port=50000,
username=’monetdb’, password=’monetdb’,
unix_socket=None, autocommit=False,
host=None, user=None, connect_timeout=-
1, binary=1, replysize=None, max-
prefetch=None)

Bases: object

A MonetDB SQL database connection

exception DataError
Bases: pymonetdb.exceptions.DatabaseError

Exception raised for errors that are due to problems with the processed data like division by zero, numeric
value out of range, etc. It must be a subclass of DatabaseError.

exception DatabaseError
Bases: pymonetdb.exceptions.Error

Exception raised for errors that are related to the database. It must be a subclass of Error.

exception Error
Bases: Exception

Exception that is the base class of all other error exceptions. You can use this to catch all errors with one
single ‘except’ statement. Warnings are not considered errors and thus should not use this class as base. It
must be a subclass of the Python StandardError (defined in the module exceptions).

exception IntegrityError
Bases: pymonetdb.exceptions.DatabaseError

Exception raised when the relational integrity of the database is affected, e.g. a foreign key check fails. It
must be a subclass of DatabaseError.

exception InterfaceError
Bases: pymonetdb.exceptions.Error

Exception raised for errors that are related to the database interface rather than the database itself. It must
be a subclass of Error.

exception InternalError
Bases: pymonetdb.exceptions.DatabaseError

10 Chapter 1. Contents

pymonetdb Documentation, Release 1.7.1

Exception raised when the database encounters an internal error, e.g. the cursor is not valid anymore, the
transaction is out of sync, etc. It must be a subclass of DatabaseError.

exception NotSupportedError
Bases: pymonetdb.exceptions.DatabaseError

Exception raised in case a method or database API was used which is not supported by the database, e.g.
requesting a .rollback() on a connection that does not support transaction or has transactions turned off. It
must be a subclass of DatabaseError.

exception OperationalError
Bases: pymonetdb.exceptions.DatabaseError

Exception raised for errors that are related to the database’s operation and not necessarily under the control
of the programmer, e.g. an unexpected disconnect occurs, the data source name is not found, a transaction
could not be processed, a memory allocation error occurred during processing, etc. It must be a subclass
of DatabaseError.

exception ProgrammingError
Bases: pymonetdb.exceptions.DatabaseError

Exception raised for programming errors, e.g. table not found or already exists, syntax error in the SQL
statement, wrong number of parameters specified, etc. It must be a subclass of DatabaseError.

exception Warning
Bases: Exception

Exception raised for important warnings like data truncations while inserting, etc. It must be a subclass of
the Python StandardError (defined in the module exceptions).

binary

binary_command(command)
use this function to send low level mapi commands that return raw bytes

close()
Close the connection.

The connection will be unusable from this point forward; an Error exception will be raised if any operation
is attempted with the connection. The same applies to all cursor objects trying to use the connection.
Note that closing a connection without committing the changes first will cause an implicit rollback to be
performed.

command(command)
use this function to send low level mapi commands

commit()
Commit any pending transaction to the database. Note that if the database supports an auto-commit feature,
this must be initially off. An interface method may be provided to turn it back on.

Database modules that do not support transactions should implement this method with void functionality.

cursor()
Return a new Cursor Object using the connection. If the database does not provide a direct cursor concept,
the module will have to emulate cursors using other means to the extent needed by this specification.

default_cursor
alias of pymonetdb.sql.cursors.Cursor

execute(query)
use this for executing SQL queries

get_binary()→ int

1.5. API 11

pymonetdb Documentation, Release 1.7.1

get_maxprefetch()→ int

get_replysize()→ int

gettimeout()
get the amount of time before a connection times out

maxprefetch

replysize

rollback()
This method is optional since not all databases provide transaction support.

In case a database does provide transactions this method causes the database to roll back to the start of
any pending transaction. Closing a connection without committing the changes first will cause an implicit
rollback to be performed.

set_autocommit(autocommit)
Set auto commit on or off. ‘autocommit’ must be a boolean

set_binary(binary: int)

set_downloader(downloader)
Register a Downloader object which will handle file download requests.

Must be an instance of class pymonetdb.Downloader or None

set_maxprefetch(maxprefetch: int)

set_replysize(replysize: int)

set_sizeheader(sizeheader)
Set sizeheader on or off. When enabled monetdb will return the size a type. ‘sizeheader’ must be a boolean.

set_timezone(seconds_east_of_utc)

set_uploader(uploader)
Register an Uploader object which will handle file upload requests.

Must be an instance of class pymonetdb.Uploader or None.

settimeout(timeout)
set the amount of time before a connection times out

class pymonetdb.sql.cursors.Cursor(connection: pymonetdb.sql.connections.Connection)
Bases: object

This object represents a database cursor, which is used to manage the context of a fetch operation. Cursors
created from the same connection are not isolated, i.e., any changes done to the database by a cursor are imme-
diately visible by the other cursors

arraysize = None
Default value for the size parameter of fetchmany().

binary

close()
Close the cursor now (rather than whenever __del__ is called). The cursor will be unusable from this point
forward; an Error (or subclass) exception will be raised if any operation is attempted with the cursor.

debug(query, fname, sample=-1)
Locally debug a given Python UDF function in a SQL query using the PDB debugger. Optionally can run
on only a sample of the input data, for faster data export.

12 Chapter 1. Contents

pymonetdb Documentation, Release 1.7.1

execute(operation: str, parameters: Optional[Dict[KT, VT]] = None)
Prepare and execute a database operation (query or command). Parameters may be provided as mapping
and will be bound to variables in the operation.

executemany(operation, seq_of_parameters)
Prepare a database operation (query or command) and then execute it against all parameter sequences or
mappings found in the sequence seq_of_parameters.

It will return the number or rows affected

export(query, fname, sample=-1, filespath=’./’)

fetchall()
Fetch all remaining rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples).

A ProgrammingError is raised if the previous call to .execute*() did not produce any result set or no
call was issued yet.

fetchmany(size=None)
Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An
empty sequence is returned when no more rows are available.

The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor’s arraysize
determines the number of rows to be fetched.

A ProgrammingError is raised if the previous call to .execute*() did not produce any result set or no
call was issued yet.

fetchone()
Fetch the next row of a query result set, returning a single sequence, or None when no more data is
available.

get_binary()→ int

get_maxprefetch()→ int

get_replysize()→ int

maxprefetch

next()

replysize

scroll(value, mode=’relative’)
Scroll the cursor in the result set to a new position according to mode.

If mode is ‘relative’ (default), value is taken as offset to the current position in the result set, if set to
‘absolute’, value states an absolute target position.

An IndexError is raised in case a scroll operation would leave the result set.

set_binary(level: int)

set_maxprefetch(maxprefetch: int)

set_replysize(replysize: int)

setinputsizes(sizes)
This method would be used before the .execute*() method is invoked to reserve memory. This implemen-
tation doesn’t use this.

setoutputsize(size, column=None)
Set a column buffer size for fetches of large columns This implementation doesn’t use this

1.5. API 13

pymonetdb Documentation, Release 1.7.1

used_binary_protocol()→ bool
Pymonetdb-specific. Return True if the last fetch{one,many,all} for the current statement made use of the
binary protocol.

Primarily used for testing.

Note that the binary protocol is never used for the first few rows of a result set. Exactly when it kicks in
depends on the replysize setting.

1.5.2 Type conversion

functions for converting python objects to monetdb SQL format. If you want to add support for a specific type you
should add a function as a value to the mapping dict and the datatype as key.

pymonetdb.sql.monetize.convert(data)
Return the appropriate convertion function based upon the python type.

pymonetdb.sql.monetize.monet_bool(data)
returns “true” or “false”

pymonetdb.sql.monetize.monet_bytes(data)
converts bytes to string

pymonetdb.sql.monetize.monet_date(data)
returns a casted date

pymonetdb.sql.monetize.monet_datetime(data)
returns a casted timestamp

pymonetdb.sql.monetize.monet_escape(data)
returns an escaped string

pymonetdb.sql.monetize.monet_none(_)
returns a NULL string

pymonetdb.sql.monetize.monet_time(data)
returns a casted time

pymonetdb.sql.monetize.monet_timedelta(data)
returns timedelta casted to interval seconds

pymonetdb.sql.monetize.monet_unicode(data)

functions for converting monetdb SQL fields to Python objects

pymonetdb.sql.pythonize.Binary(data)
Convert to wraps binary data

pymonetdb.sql.pythonize.DateFromTicks(ticks)
Convert ticks to python Date

pymonetdb.sql.pythonize.TimeFromTicks(ticks)
Convert ticks to python Time

pymonetdb.sql.pythonize.TimeTzFromTicks(ticks)
Convert ticks to python Time

pymonetdb.sql.pythonize.TimestampFromTicks(ticks)
Convert ticks to python Timestamp

pymonetdb.sql.pythonize.TimestampTzFromTicks(ticks)
Convert ticks to python Timestamp

14 Chapter 1. Contents

pymonetdb Documentation, Release 1.7.1

pymonetdb.sql.pythonize.convert(data, type_code)
Calls the appropriate convertion function based upon the python type

pymonetdb.sql.pythonize.oid(data)
represents an object identifier

For now we will just return the string representation just like mclient does.

pymonetdb.sql.pythonize.py_bool(data)
return python boolean

pymonetdb.sql.pythonize.py_bytes(data: str)
Returns a bytes (py3) or string (py2) object representing the input blob.

pymonetdb.sql.pythonize.py_date(data)
Returns a python Date

pymonetdb.sql.pythonize.py_day_interval(data: str)→ int
Returns a python number of days where data represents a value of MonetDB’s INTERVAL DAY type which
resembles a stringified decimal.

pymonetdb.sql.pythonize.py_sec_interval(data: str)→ datetime.timedelta
Returns a python TimeDelta where data represents a value of MonetDB’s INTERVAL SECOND type which
resembles a stringified decimal.

pymonetdb.sql.pythonize.py_time(data)
returns a python Time

pymonetdb.sql.pythonize.py_timestamp(data)
Returns a python Timestamp

pymonetdb.sql.pythonize.py_timestamptz(data)
Returns a python Timestamp where data contains a tz code

pymonetdb.sql.pythonize.py_timetz(data)
returns a python Time where data contains a tz code

pymonetdb.sql.pythonize.strip(data)
returns a python string, with chopped off quotes, and replaced escape characters

1.5.3 MAPI

This is the python implementation of the mapi protocol.

class pymonetdb.mapi.Connection
Bases: object

MAPI (low level MonetDB API) connection

binary_cmd(operation: str)→ memoryview
put a mapi command on the line, with a binary response.

returns a memoryview that can only be used until the next operation on this Connection object.

cmd(operation: str)
put a mapi command on the line

connect(database: str, username: str, password: str, language: str, hostname: Optional[str]
= None, port: Optional[int] = None, unix_socket=None, connect_timeout=-1, hand-
shake_options_callback: Callable[[bool], List[HandshakeOption]] = <function Connec-
tion.<lambda>>)

setup connection to MAPI server

1.5. API 15

pymonetdb Documentation, Release 1.7.1

unix_socket is used if hostname is not defined.

disconnect()
disconnect from the monetdb server

set_downloader(downloader: Downloader)
Register the given Downloader, or None to deregister

set_reply_size(size)
Set the amount of rows returned by the server.

args: size: The number of rows

set_uploader(uploader: Uploader)
Register the given Uploader, or None to deregister

class pymonetdb.mapi.HandshakeOption(level, name, fallback, value)
Bases: object

Option that can be set during the MAPI handshake

Should be sent as <name>=<val>, where <val> is value converted to int. The level is used to determine if the
server supports this option. The fallback is a function-like object that can be called with the value (not converted
to an integer) as a parameter. Field sent can be used to keep track of whether the option has been sent.

pymonetdb.mapi.handle_error(error)
Return exception matching error code.

args: error (str): error string, potentially containing mapi error code

returns:

tuple (Exception, formatted error): returns OperationalError if unknown error or no error code in
string

pymonetdb.mapi.mapi_url_options(possible_mapi_url: str)→ Dict[str, str]
Try to parse the argument as a MAPI URL and return a Dict of url options

Return empty dict if it’s not a MAPI URL.

1.5.4 File Uploads and Downloads

Classes related to file transfer requests as used by COPY INTO ON CLIENT.

class pymonetdb.filetransfer.Upload(mapi: MapiConnection)
Represents a request from the server to upload data to the server. It is passed to the Uploader registered
by the application, which for example might retrieve the data from a file on the client system. See pymon-
etdb.sql.connections.Connection.set_uploader().

Use the method send_error() to refuse the upload, binary_writer() to get a binary file object to write to, or
text_writer() to get a text-mode file object to write to.

Implementations should be VERY CAREFUL to validate the file name before opening any files on the client
system!

is_cancelled()→ bool
Returns true if the server has cancelled the upload.

has_been_used()→ bool
Returns true if .send_error(), .text_writer() or .binary_writer() have been called.

16 Chapter 1. Contents

pymonetdb Documentation, Release 1.7.1

set_chunk_size(size: int)
After every CHUNK_SIZE bytes, the server gets the opportunity to cancel the rest of the upload. Defaults
to 1 MiB.

send_error(message: str)→ None
Tell the server the requested upload has been refused

binary_writer()→ io.BufferedIOBase
Returns a binary file-like object. All data written to it is uploaded to the server.

text_writer()→ io.TextIOBase
Returns a text-mode file-like object. All text written to it is uploaded to the server. DOS/Windows style
line endings (CR LF, \r \n) are automatically rewritten to single \n’s.

close()
End the upload succesfully

class pymonetdb.filetransfer.Uploader
Base class for upload hooks. Instances of subclasses of this class can be registered using pymon-
etdb.Connection.set_uploader(). Every time an upload request is received, an Upload object is created and
passed to this objects .handle_upload() method.

If the server cancels the upload halfway, the .cancel() methods is called and all further data written is ignored.

handle_upload(upload: pymonetdb.filetransfer.uploads.Upload, filename: str, text_mode: bool,
skip_amount: int)

Called when an upload request is received. Implementations should either send an error using up-
load.send_error(), or request a writer using upload.text_writer() or upload.binary_writer(). All data written
to the writer will be sent to the server.

Parameter ‘filename’ is the file name used in the COPY INTO statement. Parameter ‘text_mode’ indicates
whether the server requested a text file or a binary file. In case of a text file, ‘skip_amount’ indicates the
number of lines to skip. In binary mode, ‘skip_amount’ is always 0.

SECURITY NOTE! Make sure to carefully validate the file name before opening files on the file system.
Otherwise, if an adversary has taken control of the network connection or of the server, they can use file
upload requests to read arbitrary files from your computer (../../)

cancel()
Optional method called when the server cancels the upload.

class pymonetdb.filetransfer.Download(mapi: pymonetdb.mapi.Connection)
Represents a request from the server to download data from the server. It is passed to the Downloader regis-
tered by the application, which for example might write the data to a file on the client system. See pymon-
etdb.Connection.set_downloader().

Use the method send_error() to refuse the download, binary_reader() to get a binary file object to read bytes
from, or text_reader() to get a text-mode file object to read text from.

Implementations should be EXTREMELY CAREFUL to validate the file name before opening and writing to
any files on the client system!

send_error(message: str)→ None
Tell the server the requested download is refused

binary_reader()
Returns a binary file-like object to read the downloaded data from.

text_reader()
Returns a text mode file-like object to read the downloaded data from.

close()
End the download succesfully. Any unconsumed data will be discarded.

1.5. API 17

pymonetdb Documentation, Release 1.7.1

class pymonetdb.filetransfer.Downloader
Base class for download hooks. Instances of subclasses of this class can be registered using pymon-
etdb.Connection.set_downloader(). Every time a download request arrives, a Download object is created and
passed to this objects .handle_download() method.

SECURITY NOTE! Make sure to carefully validate the file name before opening files on the file system. Oth-
erwise, if an adversary has taken control of the network connection or of the server, they can use download
requests to OVERWRITE ARBITRARY FILES on your computer

handle_download(download: pymonetdb.filetransfer.downloads.Download, filename: str,
text_mode: bool)

Called when a download request is received. Implementations should either send an error using down-
load.send_error(), or request a reader using download.text_reader() or download.binary_reader().

Parameter ‘filename’ is the file name used in the COPY INTO statement. Parameter ‘text_mode’ indicates
whether the server requested text or binary mode.

SECURITY NOTE! Make sure to carefully validate the file name before opening files on the file system.
Otherwise, if an adversary has taken control of the network connection or of the server, they can use file
download requests to overwrite arbitrary files on your computer. (../../)

class pymonetdb.filetransfer.SafeDirectoryHandler(dir, encoding: Optional[str] =
None, newline: Optional[str] =
None, compression=True)

File transfer handler which uploads and downloads files from a given directory, taking care not to allow ac-
cess to files outside that directory. Instances of this class can be registered using the pymonetb.Connection’s
set_uploader() and set_downloader() methods.

When downloading text files, the downloaded text is converted according to the encoding and newline parame-
ters, if present. Valid values for encoding are any encoding known to Python, or None. Valid values for newline
are “\n”, “\r\n” or None. None means to use the system default.

For binary up- and downloads, no conversions are applied.

When uploading text files, the encoding parameter indicates how the text is read and newline is mostly ignored:
both \n and \r\n are valid line endings. The exception is that because the server expects its input to be \n-
terminated UTF-8 text, if you set encoding to “utf-8” and newline to “\n”, text mode transfers are performed as
binary, which improves performance. For uploads, only do this if you are absolutely, positively sure that all files
in the directory are actually valid UTF-8 encoded and have Unix line endings.

If compression is set to True, which is the default, the SafeDirectoryHandler will automatically compress and
decompress files with extensions .gz, .bz2, .xz and .lz4. Note that the first three algorithms are built into Python,
but LZ4 only works if the lz4.frame module is available.

handle_upload(upload: pymonetdb.filetransfer.uploads.Upload, filename: str, text_mode: bool,
skip_amount: int)

Meta private

handle_download(download: pymonetdb.filetransfer.downloads.Download, filename: str,
text_mode: bool)

Called when a download request is received. Implementations should either send an error using down-
load.send_error(), or request a reader using download.text_reader() or download.binary_reader().

Parameter ‘filename’ is the file name used in the COPY INTO statement. Parameter ‘text_mode’ indicates
whether the server requested text or binary mode.

SECURITY NOTE! Make sure to carefully validate the file name before opening files on the file system.
Otherwise, if an adversary has taken control of the network connection or of the server, they can use file
download requests to overwrite arbitrary files on your computer. (../../)

18 Chapter 1. Contents

pymonetdb Documentation, Release 1.7.1

1.5.5 MonetDB remote control

class pymonetdb.control.Control(hostname=None, port=50000, passphrase=None,
unix_socket=None, connect_timeout=-1)

Bases: object

Use this module to manage your MonetDB databases. You can create, start, stop, lock, unlock, destroy your
databases and request status information.

create(database_name)
Initialises a new database or multiplexfunnel in the MonetDB Server. A database created with this com-
mand makes it available for use, however in maintenance mode (see pymonetdb lock).

defaults()

destroy(database_name)
Removes the given database, including all its data and logfiles. Once destroy has completed, all data is
lost. Be careful when using this command.

get(database_name)
gets value for property for the given database, or retrieves all properties for the given database

inherit(database_name, property_)
unsets property, reverting to its inherited value from the default configuration for the given database

kill(database_name)
Kills the given database, if the MonetDB Database Server is running. Note: killing a database should only
be done as last resort to stop a database. A database being killed may end up with data loss.

lock(database_name)
Puts the given database in maintenance mode. A database under maintenance can only be connected to by
the DBA. A database which is under maintenance is not started automatically. Use the “release” command
to bring the database back for normal usage.

neighbours()

release(database_name)
Brings back a database from maintenance mode. A released database is available again for normal use.
Use the “lock” command to take a database under maintenance.

rename(old, new)

set(database_name, property_, value)
sets property to value for the given database for a list of properties, use pymonetdb get all

start(database_name)
Starts the given database, if the MonetDB Database Server is running.

status(database_name=False)
Shows the state of a given glob-style database match, or all known if none given. Instead of the normal
mode, a long and crash mode control what information is displayed.

stop(database_name)
Stops the given database, if the MonetDB Database Server is running.

pymonetdb.control.isempty(result)
raises an exception if the result is not empty

pymonetdb.control.parse_statusline(line)
parses a sabdb format status line. Support v1 and v2.

1.5. API 19

pymonetdb Documentation, Release 1.7.1

1.5.6 pymonetdb Exceptions

MonetDB Python API specific exceptions

exception pymonetdb.exceptions.DataError
Bases: pymonetdb.exceptions.DatabaseError

Exception raised for errors that are due to problems with the processed data like division by zero, numeric value
out of range, etc. It must be a subclass of DatabaseError.

exception pymonetdb.exceptions.DatabaseError
Bases: pymonetdb.exceptions.Error

Exception raised for errors that are related to the database. It must be a subclass of Error.

exception pymonetdb.exceptions.Error
Bases: Exception

Exception that is the base class of all other error exceptions. You can use this to catch all errors with one single
‘except’ statement. Warnings are not considered errors and thus should not use this class as base. It must be a
subclass of the Python StandardError (defined in the module exceptions).

exception pymonetdb.exceptions.IntegrityError
Bases: pymonetdb.exceptions.DatabaseError

Exception raised when the relational integrity of the database is affected, e.g. a foreign key check fails. It must
be a subclass of DatabaseError.

exception pymonetdb.exceptions.InterfaceError
Bases: pymonetdb.exceptions.Error

Exception raised for errors that are related to the database interface rather than the database itself. It must be a
subclass of Error.

exception pymonetdb.exceptions.InternalError
Bases: pymonetdb.exceptions.DatabaseError

Exception raised when the database encounters an internal error, e.g. the cursor is not valid anymore, the
transaction is out of sync, etc. It must be a subclass of DatabaseError.

exception pymonetdb.exceptions.NotSupportedError
Bases: pymonetdb.exceptions.DatabaseError

Exception raised in case a method or database API was used which is not supported by the database, e.g.
requesting a .rollback() on a connection that does not support transaction or has transactions turned off. It must
be a subclass of DatabaseError.

exception pymonetdb.exceptions.OperationalError
Bases: pymonetdb.exceptions.DatabaseError

Exception raised for errors that are related to the database’s operation and not necessarily under the control of the
programmer, e.g. an unexpected disconnect occurs, the data source name is not found, a transaction could not be
processed, a memory allocation error occurred during processing, etc. It must be a subclass of DatabaseError.

exception pymonetdb.exceptions.ProgrammingError
Bases: pymonetdb.exceptions.DatabaseError

Exception raised for programming errors, e.g. table not found or already exists, syntax error in the SQL state-
ment, wrong number of parameters specified, etc. It must be a subclass of DatabaseError.

exception pymonetdb.exceptions.Warning
Bases: Exception

20 Chapter 1. Contents

pymonetdb Documentation, Release 1.7.1

Exception raised for important warnings like data truncations while inserting, etc. It must be a subclass of the
Python StandardError (defined in the module exceptions).

1.6 Development

1.6.1 Github

We maintain pymonetdb on GitHub. If you have problems with pymonetdb, please raise an issue in the issue tracker.
Even better is if you have a solution to the problem! In that case, you can make our lives easier by following these
steps:

• Fork our repository on GitHub

• Add tests that will fail because of the problem

• Fix the problem

• Run the test suite again

• Commit all changes to your repository

• Issue a GitHub pull request.

Also, we try to be pep8 compatible as much as possible, where possible and reasonable.

1.6.2 Test suite

pymonetdb comes with a test suite to verify that the code works and make development easier.

Prepare test databases

Most tests use an existing MonetDB database that you must prepare beforehand. By default they try to connect to a
database named “demo” but this can be configured otherwise, see below.

Some of the tests rely on a running MonetDB daemon, to test creating and destroying new databases. This daemon
also needs to be prepared beforehand, and configured to allow control connections. Alternatively, you may disable the
control tests by setting the environment variable TSTCONTROL=off.

The commands below assume an environment without any running MonetDB processes.

Create a test database farm, e.g. “/tmp/pymonetdbtest”, and the “demo” database:

$ monetdbd create /tmp/pymonetdbtest
$ monetdbd start /tmp/pymonetdbtest
$ monetdb create demo
$ monetdb release demo

If you want to run the control tests (in tests/test_control.py), you need to set a passphrase and enable remote control:

$ monetdbd set control=yes /tmp/pymonetdbtest
$ monetdbd set passphrase=testdb /tmp/pymonetdbtest
$ monetdbd stop /tmp/pymonetdbtest
$ monetdbd start /tmp/pymonetdbtest

1.6. Development 21

https://github.com/gijzelaerr/pymonetdb
https://github.com/gijzelaerr/pymonetdb/issues

pymonetdb Documentation, Release 1.7.1

Note 1: Test databases created by test_control.py are cleaned up after the control tests have finished. However, the
demo database and the MonetDB daemon itself are neither stopped nor destroyed.

Note 2: The above commands are also in the file tests/initdb.sh. Once the database farm has been created, you can use
that script to do the remaining work:

$ tests/initdb.sh demo /tmp/pymonetdbtest

WARNING: initdb.sh will destroy the given database demo WITHOUT asking for confirmation!

Run tests

There are many ways to run the tests. Below we list several often-used commands. The commands should be run in
the root directory of the pymonetdb source directory.

• With Python unittest:

$ python -m unittest # to run all tests
$ python -m unittest -f # to run all tests but stop after the first failure
$ python -m unittest -v # to run all tests and get information about individual
→˓test
$ python -m unittest -v tests.test_policy # to run all tests of the module "tests.
→˓test_policy"
$ python -m unittest -v -k test_fetch # to run the sub-test set "test_fetch*"

• With pytest:

$ pytest # to run all tests
$ pytest -v # to run all tests and get information about individual test
$ pytest -v tests/test_oid.py # to run one test file

• With make:

$ make test

Note: make test creates a venv in which it installs and runs pytest. If you get the error “Could not install packages
due to an OSError: [Errno 39] Directory not empty: ‘_internal’”, it is probably because your pymonetdb source is in
a Vagrant shared folder. A simple workaround is to move your pymonetdb source to a local folder on your VM. See
also vagrant.

• With tox:

$ pip install tox; tox

Note: If it is not listed there, you must add your Python version to the envlist in the tox.ini file.

Environment variables

Several environment variables are defined in tests/util.py. Many of them are self-explanatory. Here we just highlight a
few:

• TSTDB is the name of the preexisting database used by most of the tests. TSTHOSTNAME, TSTUSERNAME,
TSTPASSWORD and MAPIPORT control the other connection parameters. Note that for historical reasons it
is MAPIPORT, not TSTPORT.

• TSTPASSPHRASE is the Merovingian passphrase you must set to run the control test (see Prepare test
databases above).

22 Chapter 1. Contents

https://github.com/hashicorp/vagrant/issues/12057

pymonetdb Documentation, Release 1.7.1

• Some tests are skipped unless you set TSTFULL to true, e.g.:

$ TSTFULL=true python3 -m unittest -v tests/test_control.py

• TSTCONTROL is used to control the tests in test_control.py. The default tcp,local means run the tests over
TCP/IP (e.g. on port 50000) and the Unix domain socket (e.g. “/tmp/s.merovingian.50000”). When you run
MonetDB in, e.g., a Docker container, you can turn off the tests over the Unix socket using TSTCONTROL=tcp.
If you want to turn off all Merovingian tests, you can use TSTCONTROL=off (actually, any string other than
“tcp” and “local” will do):

$ TSTFULL=true TSTCONTROL=tcp python3 -m unittest -v tests/test_control.py

• TSTREPLYSIZE, TSTMAXPREFETCH and TSTBINARY control the size and format of the result set transfer
(see Result set batch size). Check out the tests in test_policy.py for examples of implemented data transfer
policies and how setting the variables replysize, maxprefetch and binary affects those policies.

1.6. Development 23

pymonetdb Documentation, Release 1.7.1

24 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

25

pymonetdb Documentation, Release 1.7.1

26 Chapter 2. Indices and tables

Python Module Index

p
pymonetdb.control, 19
pymonetdb.exceptions, 20
pymonetdb.filetransfer, 16
pymonetdb.mapi, 15
pymonetdb.sql.monetize, 14
pymonetdb.sql.pythonize, 14

27

pymonetdb Documentation, Release 1.7.1

28 Python Module Index

Index

A
arraysize (pymonetdb.sql.cursors.Cursor attribute),

12

B
binary (pymonetdb.sql.connections.Connection at-

tribute), 11
binary (pymonetdb.sql.cursors.Cursor attribute), 12
Binary() (in module pymonetdb.sql.pythonize), 14
binary_cmd() (pymonetdb.mapi.Connection method),

15
binary_command() (pymon-

etdb.sql.connections.Connection method),
11

binary_reader() (pymonetdb.filetransfer.Download
method), 17

binary_writer() (pymonetdb.filetransfer.Upload
method), 17

C
cancel() (pymonetdb.filetransfer.Uploader method),

17
close() (pymonetdb.filetransfer.Download method), 17
close() (pymonetdb.filetransfer.Upload method), 17
close() (pymonetdb.sql.connections.Connection

method), 11
close() (pymonetdb.sql.cursors.Cursor method), 12
cmd() (pymonetdb.mapi.Connection method), 15
command() (pymonetdb.sql.connections.Connection

method), 11
commit() (pymonetdb.sql.connections.Connection

method), 11
connect() (in module pymonetdb), 9
connect() (pymonetdb.mapi.Connection method), 15
Connection (class in pymonetdb.mapi), 15
Connection (class in pymonetdb.sql.connections), 10
Connection.DatabaseError, 10
Connection.DataError, 10
Connection.Error, 10

Connection.IntegrityError, 10
Connection.InterfaceError, 10
Connection.InternalError, 10
Connection.NotSupportedError, 11
Connection.OperationalError, 11
Connection.ProgrammingError, 11
Connection.Warning, 11
Control (class in pymonetdb.control), 19
convert() (in module pymonetdb.sql.monetize), 14
convert() (in module pymonetdb.sql.pythonize), 14
create() (pymonetdb.control.Control method), 19
Cursor (class in pymonetdb.sql.cursors), 12
cursor() (pymonetdb.sql.connections.Connection

method), 11

D
DatabaseError, 20
DataError, 20
DateFromTicks() (in module pymon-

etdb.sql.pythonize), 14
debug() (pymonetdb.sql.cursors.Cursor method), 12
default_cursor (pymon-

etdb.sql.connections.Connection attribute),
11

defaults() (pymonetdb.control.Control method), 19
destroy() (pymonetdb.control.Control method), 19
disconnect() (pymonetdb.mapi.Connection method),

16
Download (class in pymonetdb.filetransfer), 17
Downloader (class in pymonetdb.filetransfer), 18

E
Error, 20
execute() (pymonetdb.sql.connections.Connection

method), 11
execute() (pymonetdb.sql.cursors.Cursor method), 12
executemany() (pymonetdb.sql.cursors.Cursor

method), 13
export() (pymonetdb.sql.cursors.Cursor method), 13

29

pymonetdb Documentation, Release 1.7.1

F
fetchall() (pymonetdb.sql.cursors.Cursor method),

13
fetchmany() (pymonetdb.sql.cursors.Cursor method),

13
fetchone() (pymonetdb.sql.cursors.Cursor method),

13

G
get() (pymonetdb.control.Control method), 19
get_binary() (pymon-

etdb.sql.connections.Connection method),
11

get_binary() (pymonetdb.sql.cursors.Cursor
method), 13

get_maxprefetch() (pymon-
etdb.sql.connections.Connection method),
11

get_maxprefetch() (pymonetdb.sql.cursors.Cursor
method), 13

get_replysize() (pymon-
etdb.sql.connections.Connection method),
12

get_replysize() (pymonetdb.sql.cursors.Cursor
method), 13

gettimeout() (pymon-
etdb.sql.connections.Connection method),
12

H
handle_download() (pymon-

etdb.filetransfer.Downloader method), 18
handle_download() (pymon-

etdb.filetransfer.SafeDirectoryHandler
method), 18

handle_error() (in module pymonetdb.mapi), 16
handle_upload() (pymon-

etdb.filetransfer.SafeDirectoryHandler
method), 18

handle_upload() (pymonetdb.filetransfer.Uploader
method), 17

HandshakeOption (class in pymonetdb.mapi), 16
has_been_used() (pymonetdb.filetransfer.Upload

method), 16

I
inherit() (pymonetdb.control.Control method), 19
IntegrityError, 20
InterfaceError, 20
InternalError, 20
is_cancelled() (pymonetdb.filetransfer.Upload

method), 16
isempty() (in module pymonetdb.control), 19

K
kill() (pymonetdb.control.Control method), 19

L
lock() (pymonetdb.control.Control method), 19

M
mapi_url_options() (in module pymonetdb.mapi),

16
maxprefetch (pymonetdb.sql.connections.Connection

attribute), 12
maxprefetch (pymonetdb.sql.cursors.Cursor at-

tribute), 13
monet_bool() (in module pymonetdb.sql.monetize),

14
monet_bytes() (in module pymonetdb.sql.monetize),

14
monet_date() (in module pymonetdb.sql.monetize),

14
monet_datetime() (in module pymon-

etdb.sql.monetize), 14
monet_escape() (in module pymon-

etdb.sql.monetize), 14
monet_none() (in module pymonetdb.sql.monetize),

14
monet_time() (in module pymonetdb.sql.monetize),

14
monet_timedelta() (in module pymon-

etdb.sql.monetize), 14
monet_unicode() (in module pymon-

etdb.sql.monetize), 14

N
neighbours() (pymonetdb.control.Control method),

19
next() (pymonetdb.sql.cursors.Cursor method), 13
NotSupportedError, 20

O
oid() (in module pymonetdb.sql.pythonize), 15
OperationalError, 20

P
parse_statusline() (in module pymon-

etdb.control), 19
ProgrammingError, 20
py_bool() (in module pymonetdb.sql.pythonize), 15
py_bytes() (in module pymonetdb.sql.pythonize), 15
py_date() (in module pymonetdb.sql.pythonize), 15
py_day_interval() (in module pymon-

etdb.sql.pythonize), 15
py_sec_interval() (in module pymon-

etdb.sql.pythonize), 15

30 Index

pymonetdb Documentation, Release 1.7.1

py_time() (in module pymonetdb.sql.pythonize), 15
py_timestamp() (in module pymon-

etdb.sql.pythonize), 15
py_timestamptz() (in module pymon-

etdb.sql.pythonize), 15
py_timetz() (in module pymonetdb.sql.pythonize), 15
pymonetdb.control (module), 19
pymonetdb.exceptions (module), 20
pymonetdb.filetransfer (module), 16
pymonetdb.mapi (module), 15
pymonetdb.sql.monetize (module), 14
pymonetdb.sql.pythonize (module), 14

R
release() (pymonetdb.control.Control method), 19
rename() (pymonetdb.control.Control method), 19
replysize (pymonetdb.sql.connections.Connection at-

tribute), 12
replysize (pymonetdb.sql.cursors.Cursor attribute),

13
rollback() (pymonetdb.sql.connections.Connection

method), 12

S
SafeDirectoryHandler (class in pymon-

etdb.filetransfer), 18
scroll() (pymonetdb.sql.cursors.Cursor method), 13
send_error() (pymonetdb.filetransfer.Download

method), 17
send_error() (pymonetdb.filetransfer.Upload

method), 17
set() (pymonetdb.control.Control method), 19
set_autocommit() (pymon-

etdb.sql.connections.Connection method),
12

set_binary() (pymon-
etdb.sql.connections.Connection method),
12

set_binary() (pymonetdb.sql.cursors.Cursor
method), 13

set_chunk_size() (pymonetdb.filetransfer.Upload
method), 16

set_downloader() (pymonetdb.mapi.Connection
method), 16

set_downloader() (pymon-
etdb.sql.connections.Connection method),
12

set_maxprefetch() (pymon-
etdb.sql.connections.Connection method),
12

set_maxprefetch() (pymonetdb.sql.cursors.Cursor
method), 13

set_reply_size() (pymonetdb.mapi.Connection
method), 16

set_replysize() (pymon-
etdb.sql.connections.Connection method),
12

set_replysize() (pymonetdb.sql.cursors.Cursor
method), 13

set_sizeheader() (pymon-
etdb.sql.connections.Connection method),
12

set_timezone() (pymon-
etdb.sql.connections.Connection method),
12

set_uploader() (pymonetdb.mapi.Connection
method), 16

set_uploader() (pymon-
etdb.sql.connections.Connection method),
12

setinputsizes() (pymonetdb.sql.cursors.Cursor
method), 13

setoutputsize() (pymonetdb.sql.cursors.Cursor
method), 13

settimeout() (pymon-
etdb.sql.connections.Connection method),
12

start() (pymonetdb.control.Control method), 19
status() (pymonetdb.control.Control method), 19
stop() (pymonetdb.control.Control method), 19
strip() (in module pymonetdb.sql.pythonize), 15

T
text_reader() (pymonetdb.filetransfer.Download

method), 17
text_writer() (pymonetdb.filetransfer.Upload

method), 17
TimeFromTicks() (in module pymon-

etdb.sql.pythonize), 14
TimestampFromTicks() (in module pymon-

etdb.sql.pythonize), 14
TimestampTzFromTicks() (in module pymon-

etdb.sql.pythonize), 14
TimeTzFromTicks() (in module pymon-

etdb.sql.pythonize), 14

U
Upload (class in pymonetdb.filetransfer), 16
Uploader (class in pymonetdb.filetransfer), 17
used_binary_protocol() (pymon-

etdb.sql.cursors.Cursor method), 13

W
Warning, 20

Index 31

	Contents
	Getting Started
	Examples
	File Transfers
	Result set batch size
	API
	Development

	Indices and tables
	Python Module Index
	Index

