

The MonetDB Python API

pymonetdb is the native Python client API for monetDB. It is cross-platform
and does not depend on any MonetDB libraries. It supports
Python 3.6+ and PyPy and is Python DBAPI 2.0 [https://peps.python.org/pep-0249/] compatible.

Besides the functionality required by DBAPI 2.0, pymonetdb also provides some
MonetDB-specific functionality, in particular file transfers. These are detailed
in the API section.

Contents

	Getting Started
	Installation

	Connecting

	Examples
	Example session

	MAPI Connection

	CSV Upload

	File Transfers
	Make up data as you go

	Skip amount

	Cancellation

	Copying data from or to a file-like object

	Security considerations

	Result set batch size
	Batching behavior

	New result set format

	Tweaking the behavior

	Arraysize

	API
	Basic SQL usage

	Type conversion

	MAPI

	File Uploads and Downloads

	MonetDB remote control

	pymonetdb Exceptions

	Development
	Github

	Test suite

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Installation

pymonetdb is available on PyPI and can be installed with the following command:

$ pip install pymonetdb

It can also be installed from its source directory by running:

$ python setup.py install

Connecting

In its simplest form, the function pymonetdb.connect() takes a single
parameter, the database name:

conn = pymonetdb.connect('demo')

Usually, you have to pass more:

conn = pymonetdb.connect(
 'demo',
 hostname='dbhost', port=50001,
 username='yours', password='truly')

There are also some options you can set, for example autocommit=True.

It is also possible to combine everything in a URL:

url = 'mapi:monetdb://yours:truly@dbhost:50001/demo?autocommit=true'
conn = pymonetdb.connect(url)

For more details see the documentation of pymonetdb.connect().

Examples

Here are some examples of how to use pymonetdb.

Example session

> # import the SQL module
> import pymonetdb
>
> # set up a connection. arguments below are the defaults
> connection = pymonetdb.connect(username="monetdb", password="monetdb",
> hostname="localhost", database="demo")
>
> # create a cursor
> cursor = connection.cursor()
>
> # increase the rows fetched to increase performance (optional)
> cursor.arraysize = 100
>
> # execute a query (return the number of rows to fetch)
> cursor.execute('SELECT * FROM tables')
26
>
> # fetch only one row
> cursor.fetchone()
[1062, 'schemas', 1061, None, 0, True, 0, 0]
>
> # fetch the remaining rows
> cursor.fetchall()
[[1067, 'types', 1061, None, 0, True, 0, 0],
 [1076, 'functions', 1061, None, 0, True, 0, 0],
 [1085, 'args', 1061, None, 0, True, 0, 0],
 [1093, 'sequences', 1061, None, 0, True, 0, 0],
 [1103, 'dependencies', 1061, None, 0, True, 0, 0],
 [1107, 'connections', 1061, None, 0, True, 0, 0],
 [1116, '_tables', 1061, None, 0, True, 0, 0],
 ...
 [4141, 'user_role', 1061, None, 0, True, 0, 0],
 [4144, 'auths', 1061, None, 0, True, 0, 0],
 [4148, 'privileges', 1061, None, 0, True, 0, 0]]
>
> # Show the table meta data
> cursor.description
[('id', 'int', 4, 4, None, None, None),
 ('name', 'varchar', 12, 12, None, None, None),
 ('schema_id', 'int', 4, 4, None, None, None),
 ('query', 'varchar', 168, 168, None, None, None),
 ('type', 'smallint', 1, 1, None, None, None),
 ('system', 'boolean', 5, 5, None, None, None),
 ('commit_action', 'smallint', 1, 1, None, None, None),
 ('temporary', 'tinyint', 1, 1, None, None, None)]

MAPI Connection

If you would like to communicate with the database at a lower level
you can use the MAPI library (but not recommended):

> from pymonetdb import mapi
> server = mapi.Connection()
> server.connect(hostname="localhost", port=50000, username="monetdb",
 password="monetdb", database="demo", language="sql")
> server.cmd("sSELECT * FROM tables;")
...

CSV Upload

This is an example script that uploads some CSV data from the local file system:

#!/usr/bin/env python3

import os
import pymonetdb

Create the data directory and the CSV file
try:
 os.mkdir("datadir")
except FileExistsError:
 pass
with open("datadir/data.csv", "w") as f:
 for i in range(10):
 print(f"{i},item{i + 1}", file=f)

Connect to MonetDB and register the upload handler
conn = pymonetdb.connect('demo')
handler = pymonetdb.SafeDirectoryHandler("datadir")
conn.set_uploader(handler)
cursor = conn.cursor()

Set up the table
cursor.execute("DROP TABLE foo")
cursor.execute("CREATE TABLE foo(i INT, t TEXT)")

Upload the data, this will ask the handler to upload data.csv
cursor.execute("COPY INTO foo FROM 'data.csv' ON CLIENT USING DELIMITERS ','")

Check that it has loaded
cursor.execute("SELECT t FROM foo WHERE i = 9")
row = cursor.fetchone()
assert row[0] == 'item10'

Goodbye
conn.commit()
cursor.close()
conn.close()

File Transfers

MonetDB supports the non-standard COPY INTO statement to load a CSV-like
text file into a table or to dump a table into a text file. This statement has an
optional modifier ON CLIENT to indicate that the server should not
try to open the file on the server side but instead ask the client to open it
on its behalf.

For example:

COPY INTO mytable FROM 'data.csv' ON CLIENT
USING DELIMITERS ',', E'\n', '"';

However, by default, if pymonetdb receives a file request from the server, it will refuse
it for security considerations. You do not want an unauthorised party pretending
to be the server to be able to request arbitrary files on your system and even
overwrite them.

To enable file transfers, create a pymonetdb.Uploader or
pymonetdb.Downloader and register them with your connection:

transfer_handler = pymonetdb.SafeDirectoryHandler(datadir)
conn.set_uploader(transfer_handler)
conn.set_downloader(transfer_handler)

With this in place, the COPY INTO ... ON CLIENT statement above will cause pymonetdb to open
the file data.csv in the given datadir and upload its contents. As its name
suggests, SafeDirectoryHandler will only allow access to the files in
that directory.

Note that in this example, we register the same handler object as an
uploader and a downloader for demonstration purposes. In the real world, it is
good security practice only to register an uploader or a downloader
It is also possible to use two separate handlers.

See the API documentation for details.

Make up data as you go

You can also write your own transfer handlers. And instead of opening a file,
such handlers can make up the data on the fly, for instance, retrieve it from a remote
microservice, prompt the user interactively or do whatever else you come up
with:

class MyUploader(pymonetdb.Uploader):
 def handle_upload(self, upload, filename, text_mode, skip_amount):
 tw = upload.text_writer()
 for i in range(skip_amount, 1000):
 print(f'{i},number{i}', file=tw)

In this example, we call upload.text_writer() to yield a text-mode
file-like object. There is also an upload.binary_writer(), which creates a
binary-mode file-like object. The binary_writer() works even if the server requests a text
mode object, but in that case, you have to make sure the bytes you write are valid
UTF-8 and delimited with Unix line endings rather than Windows line endings.

If you want to refuse an upload or download, call upload.send_error() to send an
error message before any call to text_writer() or
binary_writer().

For custom downloaders, the situation is similar, except that instead of
text_writer and binary_writer, the download parameter offers
download.text_reader() and download.text_writer().

Skip amount

MonetDB’s COPY INTO statement allows you to skip, for example, the first
line in a file using the modifier OFFSET 2. In such a case,
the skip_amount parameter to handle_upload() will be greater than zero.

Note that the offset in the SQL statement is 1-based, whereas the skip_amount
parameter has already been converted to 0-based. The example above thus
allows us to write for i in range(skip_amount, 1000): rather
than for i in range(1000):.

Cancellation

In cases depicted by the following query, the server does not need to receive
all data of the input file:

COPY 100 RECORDS INTO mytable FROM ‘data.csv’ ON CLIENT

Therefore, pymonetdb regularly asks the server if it is still interested in
receiving more data. In this way, the server can cancel the uploading after it
has received sufficient data to process the query. By default, pymonetdb does
this after every MiB of data, but you can change this frequency using
upload.set_chunk_size().

If the server answers that it is no
longer interested, pymonetdb will discard any further data written to the
writer. It is recommended to call upload.is_cancelled() occasionally to check
for this and exit early if the upload has been cancelled.

Upload handlers also have an optional method cancel() that you can override.
This method is called when pymonetdb receives the cancellation request.

Copying data from or to a file-like object

If you are moving large amounts of data between pymonetdb and a file-like object
such as a file, Python’s copyfileobj [https://docs.python.org/3/library/shutil.html#shutil.copyfileobj] function may come in handy:

class MyUploader(pymonetdb.Uploader):
 def __init__(self, dir):
 self.dir = pathlib.Path(dir)

 def handle_upload(self, upload, filename, text_mode, skip_amount):
 # security check
 path = self.dir.joinpath(filename).resolve()
 if not str(path).startswith(str(self.dir.resolve())):
 return upload.send_error('Forbidden')
 # open
 tw = upload.text_writer()
 with open(path) as f:
 # skip
 for i in range(skip_amount):
 f.readline()
 # bulk upload
 shutil.copyfileobj(f, tw)

However, note that copyfileobj [https://docs.python.org/3/library/shutil.html#shutil.copyfileobj] does not handle cancellations as described above.

Security considerations

If your handler accesses the file system or the network, it is critical
to validate the file name you are given carefully. Otherwise, an attacker can take
over the server or the connection to the server and cause great damage.

The code sample above also includes an example of validating file systems paths.
Similar considerations apply to text inserted into network URLs and other
resource identifiers.

Result set batch size

When a query produces a large result set, pymonetdb will often only retrieve
part of the result set, retrieving the rest later, one batch at a time.
The default behavior is to start with a reasonably small batch size but
increase it rapidly. However, if necessary, the application can configure this
behavior. In the table below, you can see the settings controlling the behavior
of large transfers.

	Setting name

	Defined by

	Range

	Default

	replysize

	pymonetdb

	positive integer or -1 [*]

	100

	maxprefetch

	pymonetdb

	positive integer or -1 [*]

	2500

	arraysize

	DBAPI 2.0

	positive integer

	Connection.replysize

[*] The value -1 means unlimited.

The replysize and maxprefetch settings can be set as attributes of both
Connection and Cursor. They can also be passed as parameters in the
connection URL. The arraysize setting only exists for Cursor. It defaults to
the replysize of the connection when the cursor was created if that is
positive, or 100 otherwise.

Batching behavior

When MonetDB has finished executing a query, the server includes the first rows of
the result set in its response to Cursor.execute(). The exact number of rows
it includes can be configured using the replysize setting.

How the rest of the rows are retrieved depends on how they are accessed.
Cursor.fetchone() and Cursor.fetchmany() retrieve the remaining rows
in batches of increasing size. Every batch is twice as large as the previous
one until the prefetch limit maxprefetch has been reached. This setting
controls the maximum number of fetched rows that are not immediately used.

For instance, with replysize = 100, the first 100 fetchone() calls
immediately return the next row from the cache. For the 101-st fetchone(),
pymonetdb will first double the replysize and retrieve rows 101-300 before
returning row 101. When Cursor.fetchmany() is used, pymonetdb also adjusts
the replysize to the requested stride. For example, for fetchmany(40), the
first two calls will return rows from the cache. However, for the third call,
pymonetdb will first retrieve rows 101-320, i.e. double the replysize and
enlarge it to reach a multiple of 40, before returning rows 81 - 120.

With Cursor.fetchall(), all rows are retrieved at once.

New result set format

Version Jun2023 of MonetDB introduces a new,
binary result set format that is much more efficient to parse. The initial
transfer of replysize rows still uses the existing text-based format;
however, the subsequent batches can be transferred much more efficiently with
the binary format. By default, pymonetdb will automatically use it when
possible unless configured otherwise using the binary setting, e.g.
pymonetdb.connect(‘demo’, binary=0) or
pymonetdb.connect(‘mapi:monetdb://localhost/demo?binary=0’).

Normally, the binary result set transfer is transparent to the user
applications. The result set fetching functions automatically do the necessary
data conversion. However, if you want to know explicitly if the binary format
has been used, you can use Cursor.used_binary_protocol(), e.g. after having
called a fetch function.

We have implemented a special case to benefit from the binary protocol even
when the replysize is set to -1. When pymonetdb knows that binary transfers
are possible (e.g. learnt when connecting with MoentDB) while replysize is
-1, it overrides the replysize. Pymonetdb will use a small size for the
initial transfer and then retrieve the rest of the result set in one large
binary batch.

Tweaking the behavior

Usually, the batching behavior does not need to be tweaked.

When deciding which function to use to fetch the result sets,
Cursor.fetchmany() seems to be a few percent more efficient than
Cursor.fetchall(), while Cursor.fetchone() tends to be 10-15% slower.

To reduce the amount of prefetched data, set maxprefetch to a lower value or
even 0. The value 0 disables prefetch entirely, only fetching the requested
rows. Setting maxprefetch to -1 has the opposite effect: it allows the
prefetch size to increase without a bound.

If you expect the size of the individual rows to be huge, consider setting both
replysize and maxprefetch to small values, for example, 10 and 20,
respectively, or even 1 and 0. These small batch sizes limit the memory each
batch consumes. As a quick rule of thumb for the memory requirements, one can
assume that pymonetdb may need up to three times the size of the result set.
Also, remember that if MonetDB is running on the same host, the server will
also need at least that amount of memory.

Generally, one does not need to make replysize larger than the default
because it will grow rapidly. Furthermore, with the newer versions of MonetDB
and pymonetdb, it is better to keep the size of the initial response small to
transfer more data in the binary format.

Arraysize

The batching behavior of pymonetdb is governed mainly by replysize and
maxprefetch, but the Python DBAPI also specifies the setting arraysize [https://peps.python.org/pep-0249/#arraysize].
The relationship between these three is as follows:

	The replysize and maxprefetch settings are specific to pymonetdb,
while arraysize comes from the Python DBAPI.

	The DBAPI only uses arraysize as the default value for fetchmany() and
says that it may influence the efficiency of fetchall(). It does not mention
arraysize anywhere else.

	In pymonetdb, the batching behavior is only influenced by arraysize if
fetchmany() is used without an explicit size because then arraysize is used as the
default size, and fetchmany() tries to round the batches to this size. It
has no effect on fetchall() because that always fetches everything at once.

	The DBAPI says that the default value for the arraysize of a newly created
cursor is 1. Pymonetdb deviates from that, similar to, for example,
python-oracledb [https://python-oracledb.readthedocs.io/en/latest/api_manual/cursor.html#Cursor.arraysize]. Pymonetdb uses the replysize of the connection instead.
If replysize is not a positive integer, the default is 100.

In general, all this means that arraysize needs no tweaking.

API

Basic SQL usage

	
pymonetdb.connect(*args, **kwargs) → pymonetdb.sql.connections.Connection

	Set up a connection to a MonetDB SQL database.

	database (str)

	name of the database, or MAPI URI (see below)

	hostname (str)

	Hostname where MonetDB is running

	port (int)

	port to connect to (default: 50000)

	username (str)

	username for connection (default: “monetdb”)

	password (str)

	password for connection (default: “monetdb”)

	unix_socket (str)

	socket to connect to. used when hostname not set (default: “/tmp/.s.monetdb.50000”)

	autocommit (bool)

	enable/disable auto commit (default: false)

	connect_timeout (int)

	the socket timeout while connecting

	binary (int)

	enable binary result sets when possible if > 0 (default: 1)

	replysize(int)

	number of rows to retrieve immediately after query execution (default: 100, -1 means everything)

	maxprefetch(int)

	max. number of rows to prefetch during Cursor.fetchone() or Cursor.fetchmany()

MAPI URI Syntax:

	tcp socket

	mapi:monetdb://[<username>[:<password>]@]<host>[:<port>]/<database>

	unix domain socket

	mapi:monetdb:///[<username>[:<password>]@]path/to/socket?database=<database>

	
class pymonetdb.sql.connections.Connection(database, hostname=None, port=50000, username='monetdb', password='monetdb', unix_socket=None, autocommit=False, host=None, user=None, connect_timeout=-1, binary=1, replysize=None, maxprefetch=None)

	Bases: object

A MonetDB SQL database connection

	
exception DataError

	Bases: pymonetdb.exceptions.DatabaseError

Exception raised for errors that are due to problems with
the processed data like division by zero, numeric value
out of range, etc. It must be a subclass of DatabaseError.

	
exception DatabaseError

	Bases: pymonetdb.exceptions.Error

Exception raised for errors that are related to the
database. It must be a subclass of Error.

	
exception Error

	Bases: Exception

Exception that is the base class of all other error
exceptions. You can use this to catch all errors with one
single ‘except’ statement. Warnings are not considered
errors and thus should not use this class as base. It must
be a subclass of the Python StandardError (defined in the
module exceptions).

	
exception IntegrityError

	Bases: pymonetdb.exceptions.DatabaseError

Exception raised when the relational integrity of the
database is affected, e.g. a foreign key check fails. It
must be a subclass of DatabaseError.

	
exception InterfaceError

	Bases: pymonetdb.exceptions.Error

Exception raised for errors that are related to the
database interface rather than the database itself. It
must be a subclass of Error.

	
exception InternalError

	Bases: pymonetdb.exceptions.DatabaseError

Exception raised when the database encounters an internal
error, e.g. the cursor is not valid anymore, the
transaction is out of sync, etc. It must be a subclass of
DatabaseError.

	
exception NotSupportedError

	Bases: pymonetdb.exceptions.DatabaseError

Exception raised in case a method or database API was used which is not
supported by the database, e.g. requesting a .rollback() on a connection
that does not support transaction or has transactions turned off. It must
be a subclass of DatabaseError.

	
exception OperationalError

	Bases: pymonetdb.exceptions.DatabaseError

Exception raised for errors that are related to the
database’s operation and not necessarily under the control
of the programmer, e.g. an unexpected disconnect occurs,
the data source name is not found, a transaction could not
be processed, a memory allocation error occurred during
processing, etc. It must be a subclass of DatabaseError.

	
exception ProgrammingError

	Bases: pymonetdb.exceptions.DatabaseError

Exception raised for programming errors, e.g. table not
found or already exists, syntax error in the SQL
statement, wrong number of parameters specified, etc. It
must be a subclass of DatabaseError.

	
exception Warning

	Bases: Exception

Exception raised for important warnings like data
truncations while inserting, etc. It must be a subclass of
the Python StandardError (defined in the module
exceptions).

	
binary

	

	
binary_command(command)

	use this function to send low level mapi commands that return raw bytes

	
close()

	Close the connection.

The connection will be unusable from this
point forward; an Error exception will be raised if any operation
is attempted with the connection. The same applies to all cursor
objects trying to use the connection. Note that closing a connection
without committing the changes first will cause an implicit rollback
to be performed.

	
command(command)

	use this function to send low level mapi commands

	
commit()

	Commit any pending transaction to the database. Note that
if the database supports an auto-commit feature, this must
be initially off. An interface method may be provided to
turn it back on.

Database modules that do not support transactions should
implement this method with void functionality.

	
cursor()

	Return a new Cursor Object using the connection. If the
database does not provide a direct cursor concept, the
module will have to emulate cursors using other means to
the extent needed by this specification.

	
default_cursor

	alias of pymonetdb.sql.cursors.Cursor

	
execute(query)

	use this for executing SQL queries

	
get_binary() → int

	

	
get_maxprefetch() → int

	

	
get_replysize() → int

	

	
gettimeout()

	get the amount of time before a connection times out

	
maxprefetch

	

	
replysize

	

	
rollback()

	This method is optional since not all databases provide
transaction support.

In case a database does provide transactions this method
causes the database to roll back to the start of any
pending transaction. Closing a connection without
committing the changes first will cause an implicit
rollback to be performed.

	
set_autocommit(autocommit)

	Set auto commit on or off. ‘autocommit’ must be a boolean

	
set_binary(binary: int)

	

	
set_downloader(downloader)

	Register a Downloader object which will handle file download requests.

Must be an instance of class pymonetdb.Downloader or None

	
set_maxprefetch(maxprefetch: int)

	

	
set_replysize(replysize: int)

	

	
set_sizeheader(sizeheader)

	Set sizeheader on or off. When enabled monetdb will return
the size a type. ‘sizeheader’ must be a boolean.

	
set_timezone(seconds_east_of_utc)

	

	
set_uploader(uploader)

	Register an Uploader object which will handle file upload requests.

Must be an instance of class pymonetdb.Uploader or None.

	
settimeout(timeout)

	set the amount of time before a connection times out

	
class pymonetdb.sql.cursors.Cursor(connection: pymonetdb.sql.connections.Connection)

	Bases: object

This object represents a database cursor, which is used to manage
the context of a fetch operation. Cursors created from the same
connection are not isolated, i.e., any changes done to the
database by a cursor are immediately visible by the other
cursors

	
arraysize = None

	Default value for the size parameter of fetchmany().

	
binary

	

	
close()

	Close the cursor now (rather than whenever __del__ is
called). The cursor will be unusable from this point
forward; an Error (or subclass) exception will be raised
if any operation is attempted with the cursor.

	
debug(query, fname, sample=-1)

	Locally debug a given Python UDF function in a SQL query
using the PDB debugger. Optionally can run on only a
sample of the input data, for faster data export.

	
execute(operation: str, parameters: Optional[Dict[KT, VT]] = None)

	Prepare and execute a database operation (query or
command). Parameters may be provided as mapping and
will be bound to variables in the operation.

	
executemany(operation, seq_of_parameters)

	Prepare a database operation (query or command) and then
execute it against all parameter sequences or mappings
found in the sequence seq_of_parameters.

It will return the number or rows affected

	
export(query, fname, sample=-1, filespath='./')

	

	
fetchall()

	Fetch all remaining rows of a query result, returning
them as a sequence of sequences (e.g. a list of tuples).

A ProgrammingError is raised if the previous
call to .execute*() did not produce any result set or no
call was issued yet.

	
fetchmany(size=None)

	Fetch the next set of rows of a query result, returning a
sequence of sequences (e.g. a list of tuples). An empty
sequence is returned when no more rows are available.

The number of rows to fetch per call is specified by the
parameter. If it is not given, the cursor’s arraysize
determines the number of rows to be fetched.

A ProgrammingError is raised if the previous
call to .execute*() did not produce any result set or no
call was issued yet.

	
fetchone()

	Fetch the next row of a query result set, returning a
single sequence, or None when no more data is available.

	
get_binary() → int

	

	
get_maxprefetch() → int

	

	
get_replysize() → int

	

	
maxprefetch

	

	
next()

	

	
replysize

	

	
scroll(value, mode='relative')

	Scroll the cursor in the result set to a new position according
to mode.

If mode is ‘relative’ (default), value is taken as offset to
the current position in the result set, if set to ‘absolute’,
value states an absolute target position.

An IndexError is raised in case a scroll operation would
leave the result set.

	
set_binary(level: int)

	

	
set_maxprefetch(maxprefetch: int)

	

	
set_replysize(replysize: int)

	

	
setinputsizes(sizes)

	This method would be used before the .execute*() method
is invoked to reserve memory. This implementation doesn’t
use this.

	
setoutputsize(size, column=None)

	Set a column buffer size for fetches of large columns
This implementation doesn’t use this

	
used_binary_protocol() → bool

	Pymonetdb-specific. Return True if the last fetch{one,many,all}
for the current statement made use of the binary protocol.

Primarily used for testing.

Note that the binary protocol is never used for the first few rows
of a result set. Exactly when it kicks in depends on the
replysize setting.

Type conversion

functions for converting python objects to monetdb SQL format. If you want
to add support for a specific type you should add a function as a value to
the mapping dict and the datatype as key.

	
pymonetdb.sql.monetize.convert(data)

	Return the appropriate convertion function based upon the python type.

	
pymonetdb.sql.monetize.monet_bool(data)

	returns “true” or “false”

	
pymonetdb.sql.monetize.monet_bytes(data)

	converts bytes to string

	
pymonetdb.sql.monetize.monet_date(data)

	returns a casted date

	
pymonetdb.sql.monetize.monet_datetime(data)

	returns a casted timestamp

	
pymonetdb.sql.monetize.monet_escape(data)

	returns an escaped string

	
pymonetdb.sql.monetize.monet_none(_)

	returns a NULL string

	
pymonetdb.sql.monetize.monet_time(data)

	returns a casted time

	
pymonetdb.sql.monetize.monet_timedelta(data)

	returns timedelta casted to interval seconds

	
pymonetdb.sql.monetize.monet_unicode(data)

	

functions for converting monetdb SQL fields to Python objects

	
pymonetdb.sql.pythonize.Binary(data)

	Convert to wraps binary data

	
pymonetdb.sql.pythonize.DateFromTicks(ticks)

	Convert ticks to python Date

	
pymonetdb.sql.pythonize.TimeFromTicks(ticks)

	Convert ticks to python Time

	
pymonetdb.sql.pythonize.TimeTzFromTicks(ticks)

	Convert ticks to python Time

	
pymonetdb.sql.pythonize.TimestampFromTicks(ticks)

	Convert ticks to python Timestamp

	
pymonetdb.sql.pythonize.TimestampTzFromTicks(ticks)

	Convert ticks to python Timestamp

	
pymonetdb.sql.pythonize.convert(data, type_code)

	Calls the appropriate convertion function based upon the python type

	
pymonetdb.sql.pythonize.oid(data)

	represents an object identifier

For now we will just return the string representation just like mclient does.

	
pymonetdb.sql.pythonize.py_bool(data)

	return python boolean

	
pymonetdb.sql.pythonize.py_bytes(data: str)

	Returns a bytes (py3) or string (py2) object representing the input blob.

	
pymonetdb.sql.pythonize.py_date(data)

	Returns a python Date

	
pymonetdb.sql.pythonize.py_day_interval(data: str) → int

	Returns a python number of days where data represents a value of MonetDB’s INTERVAL DAY type
which resembles a stringified decimal.

	
pymonetdb.sql.pythonize.py_sec_interval(data: str) → datetime.timedelta

	Returns a python TimeDelta where data represents a value of MonetDB’s INTERVAL SECOND type
which resembles a stringified decimal.

	
pymonetdb.sql.pythonize.py_time(data)

	returns a python Time

	
pymonetdb.sql.pythonize.py_timestamp(data)

	Returns a python Timestamp

	
pymonetdb.sql.pythonize.py_timestamptz(data)

	Returns a python Timestamp where data contains a tz code

	
pymonetdb.sql.pythonize.py_timetz(data)

	returns a python Time where data contains a tz code

	
pymonetdb.sql.pythonize.strip(data)

	returns a python string, with chopped off quotes,
and replaced escape characters

MAPI

This is the python implementation of the mapi protocol.

	
class pymonetdb.mapi.Connection

	Bases: object

MAPI (low level MonetDB API) connection

	
binary_cmd(operation: str) → memoryview

	put a mapi command on the line, with a binary response.

returns a memoryview that can only be used until the next
operation on this Connection object.

	
cmd(operation: str)

	put a mapi command on the line

	
connect(database: str, username: str, password: str, language: str, hostname: Optional[str] = None, port: Optional[int] = None, unix_socket=None, connect_timeout=-1, handshake_options_callback: Callable[[bool], List[HandshakeOption]] = <function Connection.<lambda>>)

	setup connection to MAPI server

unix_socket is used if hostname is not defined.

	
disconnect()

	disconnect from the monetdb server

	
set_downloader(downloader: Downloader)

	Register the given Downloader, or None to deregister

	
set_reply_size(size)

	Set the amount of rows returned by the server.

	args:

	size: The number of rows

	
set_uploader(uploader: Uploader)

	Register the given Uploader, or None to deregister

	
class pymonetdb.mapi.HandshakeOption(level, name, fallback, value)

	Bases: object

Option that can be set during the MAPI handshake

Should be sent as <name>=<val>, where <val> is value converted to int.
The level is used to determine if the server supports this option.
The fallback is a function-like object that can be called with the
value (not converted to an integer) as a parameter.
Field sent can be used to keep track of whether the option has been sent.

	
pymonetdb.mapi.handle_error(error)

	Return exception matching error code.

	args:

	error (str): error string, potentially containing mapi error code

	returns:

	
	tuple (Exception, formatted error): returns OperationalError if unknown

	error or no error code in string

	
pymonetdb.mapi.mapi_url_options(possible_mapi_url: str) → Dict[str, str]

	Try to parse the argument as a MAPI URL and return a Dict of url options

Return empty dict if it’s not a MAPI URL.

File Uploads and Downloads

Classes related to file transfer requests as used by COPY INTO ON CLIENT.

	
class pymonetdb.filetransfer.Upload(mapi: MapiConnection)

	Represents a request from the server to upload data to the server. It is
passed to the Uploader registered by the application, which for example
might retrieve the data from a file on the client system. See
pymonetdb.sql.connections.Connection.set_uploader().

Use the method send_error() to refuse the upload, binary_writer() to get a
binary file object to write to, or text_writer() to get a text-mode file
object to write to.

Implementations should be VERY CAREFUL to validate the file name before
opening any files on the client system!

	
is_cancelled() → bool

	Returns true if the server has cancelled the upload.

	
has_been_used() → bool

	Returns true if .send_error(), .text_writer() or .binary_writer() have been called.

	
set_chunk_size(size: int)

	After every CHUNK_SIZE bytes, the server gets the opportunity to cancel
the rest of the upload. Defaults to 1 MiB.

	
send_error(message: str) → None

	Tell the server the requested upload has been refused

	
binary_writer() → io.BufferedIOBase

	Returns a binary file-like object. All data written to it is uploaded
to the server.

	
text_writer() → io.TextIOBase

	Returns a text-mode file-like object. All text written to it is uploaded
to the server. DOS/Windows style line endings (CR LF, \r \n) are
automatically rewritten to single \n’s.

	
close()

	End the upload succesfully

	
class pymonetdb.filetransfer.Uploader

	Base class for upload hooks. Instances of subclasses of this class can be
registered using pymonetdb.Connection.set_uploader(). Every time an upload
request is received, an Upload object is created and passed to this objects
.handle_upload() method.

If the server cancels the upload halfway, the .cancel() methods is called
and all further data written is ignored.

	
handle_upload(upload: pymonetdb.filetransfer.uploads.Upload, filename: str, text_mode: bool, skip_amount: int)

	Called when an upload request is received. Implementations should either
send an error using upload.send_error(), or request a writer using
upload.text_writer() or upload.binary_writer(). All data written to the
writer will be sent to the server.

Parameter ‘filename’ is the file name used in the COPY INTO statement.
Parameter ‘text_mode’ indicates whether the server requested a text file
or a binary file. In case of a text file, ‘skip_amount’ indicates the
number of lines to skip. In binary mode, ‘skip_amount’ is always 0.

SECURITY NOTE! Make sure to carefully validate the file name before
opening files on the file system. Otherwise, if an adversary has taken
control of the network connection or of the server, they can use file
upload requests to read arbitrary files from your computer
(../../)

	
cancel()

	Optional method called when the server cancels the upload.

	
class pymonetdb.filetransfer.Download(mapi: pymonetdb.mapi.Connection)

	Represents a request from the server to download data from the server. It is
passed to the Downloader registered by the application, which for example
might write the data to a file on the client system. See
pymonetdb.Connection.set_downloader().

Use the method send_error() to refuse the download, binary_reader() to get a
binary file object to read bytes from, or text_reader() to get a text-mode
file object to read text from.

Implementations should be EXTREMELY CAREFUL to validate the file name before
opening and writing to any files on the client system!

	
send_error(message: str) → None

	Tell the server the requested download is refused

	
binary_reader()

	Returns a binary file-like object to read the downloaded data from.

	
text_reader()

	Returns a text mode file-like object to read the downloaded data from.

	
close()

	End the download succesfully. Any unconsumed data will be discarded.

	
class pymonetdb.filetransfer.Downloader

	Base class for download hooks. Instances of subclasses of this class can be
registered using pymonetdb.Connection.set_downloader(). Every time a
download request arrives, a Download object is created and passed to this
objects .handle_download() method.

SECURITY NOTE! Make sure to carefully validate the file name before opening
files on the file system. Otherwise, if an adversary has taken control of
the network connection or of the server, they can use download requests to
OVERWRITE ARBITRARY FILES on your computer

	
handle_download(download: pymonetdb.filetransfer.downloads.Download, filename: str, text_mode: bool)

	Called when a download request is received. Implementations should either
send an error using download.send_error(), or request a reader using
download.text_reader() or download.binary_reader().

Parameter ‘filename’ is the file name used in the COPY INTO statement.
Parameter ‘text_mode’ indicates whether the server requested text
or binary mode.

SECURITY NOTE! Make sure to carefully validate the file name before
opening files on the file system. Otherwise, if an adversary has taken
control of the network connection or of the server, they can use file
download requests to overwrite arbitrary files on your computer.
(../../)

	
class pymonetdb.filetransfer.SafeDirectoryHandler(dir, encoding: Optional[str] = None, newline: Optional[str] = None, compression=True)

	File transfer handler which uploads and downloads files from a given
directory, taking care not to allow access to files outside that directory.
Instances of this class can be registered using the pymonetb.Connection’s
set_uploader() and set_downloader() methods.

When downloading text files, the downloaded text is converted according to
the encoding and newline parameters, if present. Valid values for
encoding are any encoding known to Python, or None. Valid values for
newline are “\n”, “\r\n” or None. None means to use the
system default.

For binary up- and downloads, no conversions are applied.

When uploading text files, the encoding parameter indicates how the text
is read and newline is mostly ignored: both \n and \r\n are
valid line endings. The exception is that because the server expects its
input to be \n-terminated UTF-8 text, if you set encoding to “utf-8”
and newline to “\n”, text mode transfers are performed as binary, which
improves performance. For uploads, only do this if you are absolutely,
positively sure that all files in the directory are actually valid UTF-8
encoded and have Unix line endings.

If compression is set to True, which is the default, the
SafeDirectoryHandler will automatically compress and decompress files with
extensions .gz, .bz2, .xz and .lz4. Note that the first three algorithms are
built into Python, but LZ4 only works if the lz4.frame module is available.

	
handle_upload(upload: pymonetdb.filetransfer.uploads.Upload, filename: str, text_mode: bool, skip_amount: int)

	
	Meta private

	

	
handle_download(download: pymonetdb.filetransfer.downloads.Download, filename: str, text_mode: bool)

	Called when a download request is received. Implementations should either
send an error using download.send_error(), or request a reader using
download.text_reader() or download.binary_reader().

Parameter ‘filename’ is the file name used in the COPY INTO statement.
Parameter ‘text_mode’ indicates whether the server requested text
or binary mode.

SECURITY NOTE! Make sure to carefully validate the file name before
opening files on the file system. Otherwise, if an adversary has taken
control of the network connection or of the server, they can use file
download requests to overwrite arbitrary files on your computer.
(../../)

MonetDB remote control

	
class pymonetdb.control.Control(hostname=None, port=50000, passphrase=None, unix_socket=None, connect_timeout=-1)

	Bases: object

Use this module to manage your MonetDB databases. You can create, start,
stop, lock, unlock, destroy your databases and request status information.

	
create(database_name)

	Initialises a new database or multiplexfunnel in the MonetDB Server.
A database created with this command makes it available for use,
however in maintenance mode (see pymonetdb lock).

	
defaults()

	

	
destroy(database_name)

	Removes the given database, including all its data and
logfiles. Once destroy has completed, all data is lost.
Be careful when using this command.

	
get(database_name)

	gets value for property for the given database, or
retrieves all properties for the given database

	
inherit(database_name, property_)

	unsets property, reverting to its inherited value from
the default configuration for the given database

	
kill(database_name)

	Kills the given database, if the MonetDB Database Server
is running. Note: killing a database should only be done
as last resort to stop a database. A database being
killed may end up with data loss.

	
lock(database_name)

	Puts the given database in maintenance mode. A database
under maintenance can only be connected to by the DBA.
A database which is under maintenance is not started
automatically. Use the “release” command to bring
the database back for normal usage.

	
neighbours()

	

	
release(database_name)

	Brings back a database from maintenance mode. A released
database is available again for normal use. Use the
“lock” command to take a database under maintenance.

	
rename(old, new)

	

	
set(database_name, property_, value)

	sets property to value for the given database
for a list of properties, use pymonetdb get all

	
start(database_name)

	Starts the given database, if the MonetDB Database Server
is running.

	
status(database_name=False)

	Shows the state of a given glob-style database match, or
all known if none given. Instead of the normal mode, a
long and crash mode control what information is displayed.

	
stop(database_name)

	Stops the given database, if the MonetDB Database Server
is running.

	
pymonetdb.control.isempty(result)

	raises an exception if the result is not empty

	
pymonetdb.control.parse_statusline(line)

	parses a sabdb format status line. Support v1 and v2.

pymonetdb Exceptions

MonetDB Python API specific exceptions

	
exception pymonetdb.exceptions.DataError

	Bases: pymonetdb.exceptions.DatabaseError

Exception raised for errors that are due to problems with
the processed data like division by zero, numeric value
out of range, etc. It must be a subclass of DatabaseError.

	
exception pymonetdb.exceptions.DatabaseError

	Bases: pymonetdb.exceptions.Error

Exception raised for errors that are related to the
database. It must be a subclass of Error.

	
exception pymonetdb.exceptions.Error

	Bases: Exception

Exception that is the base class of all other error
exceptions. You can use this to catch all errors with one
single ‘except’ statement. Warnings are not considered
errors and thus should not use this class as base. It must
be a subclass of the Python StandardError (defined in the
module exceptions).

	
exception pymonetdb.exceptions.IntegrityError

	Bases: pymonetdb.exceptions.DatabaseError

Exception raised when the relational integrity of the
database is affected, e.g. a foreign key check fails. It
must be a subclass of DatabaseError.

	
exception pymonetdb.exceptions.InterfaceError

	Bases: pymonetdb.exceptions.Error

Exception raised for errors that are related to the
database interface rather than the database itself. It
must be a subclass of Error.

	
exception pymonetdb.exceptions.InternalError

	Bases: pymonetdb.exceptions.DatabaseError

Exception raised when the database encounters an internal
error, e.g. the cursor is not valid anymore, the
transaction is out of sync, etc. It must be a subclass of
DatabaseError.

	
exception pymonetdb.exceptions.NotSupportedError

	Bases: pymonetdb.exceptions.DatabaseError

Exception raised in case a method or database API was used which is not
supported by the database, e.g. requesting a .rollback() on a connection
that does not support transaction or has transactions turned off. It must
be a subclass of DatabaseError.

	
exception pymonetdb.exceptions.OperationalError

	Bases: pymonetdb.exceptions.DatabaseError

Exception raised for errors that are related to the
database’s operation and not necessarily under the control
of the programmer, e.g. an unexpected disconnect occurs,
the data source name is not found, a transaction could not
be processed, a memory allocation error occurred during
processing, etc. It must be a subclass of DatabaseError.

	
exception pymonetdb.exceptions.ProgrammingError

	Bases: pymonetdb.exceptions.DatabaseError

Exception raised for programming errors, e.g. table not
found or already exists, syntax error in the SQL
statement, wrong number of parameters specified, etc. It
must be a subclass of DatabaseError.

	
exception pymonetdb.exceptions.Warning

	Bases: Exception

Exception raised for important warnings like data
truncations while inserting, etc. It must be a subclass of
the Python StandardError (defined in the module
exceptions).

Development

Github

We maintain pymonetdb on GitHub [https://github.com/gijzelaerr/pymonetdb].
If you have problems with pymonetdb, please raise an issue in the
issue tracker [https://github.com/gijzelaerr/pymonetdb/issues]. Even better
is if you have a solution to the problem! In that case, you can make our lives easier
by following these steps:

	Fork our repository on GitHub

	Add tests that will fail because of the problem

	Fix the problem

	Run the test suite again

	Commit all changes to your repository

	Issue a GitHub pull request.

Also, we try to be pep8 compatible as much as possible, where possible and
reasonable.

Test suite

pymonetdb comes with a test suite to verify that the code
works and make development easier.

Prepare test databases

Most tests use an existing MonetDB database that you must prepare beforehand.
By default they try to connect to a database named “demo” but
this can be configured otherwise, see below.

Some of the tests rely on a running MonetDB daemon, to test
creating and destroying new databases. This daemon also needs to be prepared
beforehand, and configured to allow control connections.
Alternatively, you may disable the control tests by setting the environment
variable TSTCONTROL=off.

The commands below assume an environment without any running MonetDB processes.

Create a test database farm, e.g. “/tmp/pymonetdbtest”, and the “demo”
database:

$ monetdbd create /tmp/pymonetdbtest
$ monetdbd start /tmp/pymonetdbtest
$ monetdb create demo
$ monetdb release demo

If you want to run the control tests (in tests/test_control.py), you need to
set a passphrase and enable remote control:

$ monetdbd set control=yes /tmp/pymonetdbtest
$ monetdbd set passphrase=testdb /tmp/pymonetdbtest
$ monetdbd stop /tmp/pymonetdbtest
$ monetdbd start /tmp/pymonetdbtest

Note 1: Test databases created by test_control.py are cleaned up after the
control tests have finished. However, the demo database and the MonetDB daemon
itself are neither stopped nor destroyed.

Note 2: The above commands are also in the file tests/initdb.sh. Once the
database farm has been created, you can use that script to do the remaining
work:

$ tests/initdb.sh demo /tmp/pymonetdbtest

WARNING: initdb.sh will destroy the given database demo WITHOUT
asking for confirmation!

Run tests

There are many ways to run the tests.
Below we list several often-used commands.
The commands should be run in the root directory of the pymonetdb source directory.

	With Python unittest:

$ python -m unittest # to run all tests
$ python -m unittest -f # to run all tests but stop after the first failure
$ python -m unittest -v # to run all tests and get information about individual test
$ python -m unittest -v tests.test_policy # to run all tests of the module "tests.test_policy"
$ python -m unittest -v -k test_fetch # to run the sub-test set "test_fetch*"

	With pytest:

$ pytest # to run all tests
$ pytest -v # to run all tests and get information about individual test
$ pytest -v tests/test_oid.py # to run one test file

	With make:

$ make test

Note: make test creates a venv in which it installs and runs pytest. If
you get the error “Could not install packages due to an OSError: [Errno 39]
Directory not empty: ‘_internal’”, it is probably because your pymonetdb source
is in a Vagrant shared folder. A simple workaround is to move your pymonetdb
source to a local folder on your VM. See also vagrant [https://github.com/hashicorp/vagrant/issues/12057].

	With tox:

$ pip install tox; tox

Note: If it is not listed there, you must add your Python version to the envlist in the
tox.ini file.

Environment variables

Several environment variables are defined in tests/util.py.
Many of them are self-explanatory.
Here we just highlight a few:

	TSTDB is the name of the preexisting database used by most of the tests.
TSTHOSTNAME, TSTUSERNAME, TSTPASSWORD and MAPIPORT control the other connection
parameters. Note that for historical reasons it is MAPIPORT, not TSTPORT.

	TSTPASSPHRASE is the Merovingian passphrase you must set to run the control
test (see Prepare test databases above).

	Some tests are skipped unless you set TSTFULL to true, e.g.:

$ TSTFULL=true python3 -m unittest -v tests/test_control.py

	TSTCONTROL is used to control the tests in test_control.py. The default
tcp,local means run the tests over TCP/IP (e.g. on port 50000) and the Unix
domain socket (e.g. “/tmp/s.merovingian.50000”). When you run MonetDB in,
e.g., a Docker container, you can turn off the tests over the Unix socket
using TSTCONTROL=tcp. If you want to turn off all Merovingian tests, you
can use TSTCONTROL=off (actually, any string other than “tcp” and “local”
will do):

$ TSTFULL=true TSTCONTROL=tcp python3 -m unittest -v tests/test_control.py

	TSTREPLYSIZE, TSTMAXPREFETCH and TSTBINARY control the size and format of the
result set transfer (see Result set batch size). Check out the tests in
test_policy.py for examples of implemented data transfer policies and how
setting the variables replysize, maxprefetch and binary affects those
policies.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pymonetdb	

 	
 	
 pymonetdb.control	

 	
 	
 pymonetdb.exceptions	

 	
 	
 pymonetdb.filetransfer	

 	
 	
 pymonetdb.mapi	

 	
 	
 pymonetdb.sql.monetize	

 	
 	
 pymonetdb.sql.pythonize	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	arraysize (pymonetdb.sql.cursors.Cursor attribute)

B

 	
 	binary (pymonetdb.sql.connections.Connection attribute)

 	(pymonetdb.sql.cursors.Cursor attribute)

 	Binary() (in module pymonetdb.sql.pythonize)

 	
 	binary_cmd() (pymonetdb.mapi.Connection method)

 	binary_command() (pymonetdb.sql.connections.Connection method)

 	binary_reader() (pymonetdb.filetransfer.Download method)

 	binary_writer() (pymonetdb.filetransfer.Upload method)

C

 	
 	cancel() (pymonetdb.filetransfer.Uploader method)

 	close() (pymonetdb.filetransfer.Download method)

 	(pymonetdb.filetransfer.Upload method)

 	(pymonetdb.sql.connections.Connection method)

 	(pymonetdb.sql.cursors.Cursor method)

 	cmd() (pymonetdb.mapi.Connection method)

 	command() (pymonetdb.sql.connections.Connection method)

 	commit() (pymonetdb.sql.connections.Connection method)

 	connect() (in module pymonetdb)

 	(pymonetdb.mapi.Connection method)

 	Connection (class in pymonetdb.mapi)

 	(class in pymonetdb.sql.connections)

 	Connection.DatabaseError

 	Connection.DataError

 	
 	Connection.Error

 	Connection.IntegrityError

 	Connection.InterfaceError

 	Connection.InternalError

 	Connection.NotSupportedError

 	Connection.OperationalError

 	Connection.ProgrammingError

 	Connection.Warning

 	Control (class in pymonetdb.control)

 	convert() (in module pymonetdb.sql.monetize)

 	(in module pymonetdb.sql.pythonize)

 	create() (pymonetdb.control.Control method)

 	Cursor (class in pymonetdb.sql.cursors)

 	cursor() (pymonetdb.sql.connections.Connection method)

D

 	
 	DatabaseError

 	DataError

 	DateFromTicks() (in module pymonetdb.sql.pythonize)

 	debug() (pymonetdb.sql.cursors.Cursor method)

 	default_cursor (pymonetdb.sql.connections.Connection attribute)

 	
 	defaults() (pymonetdb.control.Control method)

 	destroy() (pymonetdb.control.Control method)

 	disconnect() (pymonetdb.mapi.Connection method)

 	Download (class in pymonetdb.filetransfer)

 	Downloader (class in pymonetdb.filetransfer)

E

 	
 	Error

 	execute() (pymonetdb.sql.connections.Connection method)

 	(pymonetdb.sql.cursors.Cursor method)

 	
 	executemany() (pymonetdb.sql.cursors.Cursor method)

 	export() (pymonetdb.sql.cursors.Cursor method)

F

 	
 	fetchall() (pymonetdb.sql.cursors.Cursor method)

 	
 	fetchmany() (pymonetdb.sql.cursors.Cursor method)

 	fetchone() (pymonetdb.sql.cursors.Cursor method)

G

 	
 	get() (pymonetdb.control.Control method)

 	get_binary() (pymonetdb.sql.connections.Connection method)

 	(pymonetdb.sql.cursors.Cursor method)

 	get_maxprefetch() (pymonetdb.sql.connections.Connection method)

 	(pymonetdb.sql.cursors.Cursor method)

 	
 	get_replysize() (pymonetdb.sql.connections.Connection method)

 	(pymonetdb.sql.cursors.Cursor method)

 	gettimeout() (pymonetdb.sql.connections.Connection method)

H

 	
 	handle_download() (pymonetdb.filetransfer.Downloader method)

 	(pymonetdb.filetransfer.SafeDirectoryHandler method)

 	handle_error() (in module pymonetdb.mapi)

 	
 	handle_upload() (pymonetdb.filetransfer.SafeDirectoryHandler method)

 	(pymonetdb.filetransfer.Uploader method)

 	HandshakeOption (class in pymonetdb.mapi)

 	has_been_used() (pymonetdb.filetransfer.Upload method)

I

 	
 	inherit() (pymonetdb.control.Control method)

 	IntegrityError

 	InterfaceError

 	
 	InternalError

 	is_cancelled() (pymonetdb.filetransfer.Upload method)

 	isempty() (in module pymonetdb.control)

K

 	
 	kill() (pymonetdb.control.Control method)

L

 	
 	lock() (pymonetdb.control.Control method)

M

 	
 	mapi_url_options() (in module pymonetdb.mapi)

 	maxprefetch (pymonetdb.sql.connections.Connection attribute)

 	(pymonetdb.sql.cursors.Cursor attribute)

 	monet_bool() (in module pymonetdb.sql.monetize)

 	monet_bytes() (in module pymonetdb.sql.monetize)

 	monet_date() (in module pymonetdb.sql.monetize)

 	
 	monet_datetime() (in module pymonetdb.sql.monetize)

 	monet_escape() (in module pymonetdb.sql.monetize)

 	monet_none() (in module pymonetdb.sql.monetize)

 	monet_time() (in module pymonetdb.sql.monetize)

 	monet_timedelta() (in module pymonetdb.sql.monetize)

 	monet_unicode() (in module pymonetdb.sql.monetize)

N

 	
 	neighbours() (pymonetdb.control.Control method)

 	
 	next() (pymonetdb.sql.cursors.Cursor method)

 	NotSupportedError

O

 	
 	oid() (in module pymonetdb.sql.pythonize)

 	
 	OperationalError

P

 	
 	parse_statusline() (in module pymonetdb.control)

 	ProgrammingError

 	py_bool() (in module pymonetdb.sql.pythonize)

 	py_bytes() (in module pymonetdb.sql.pythonize)

 	py_date() (in module pymonetdb.sql.pythonize)

 	py_day_interval() (in module pymonetdb.sql.pythonize)

 	py_sec_interval() (in module pymonetdb.sql.pythonize)

 	py_time() (in module pymonetdb.sql.pythonize)

 	
 	py_timestamp() (in module pymonetdb.sql.pythonize)

 	py_timestamptz() (in module pymonetdb.sql.pythonize)

 	py_timetz() (in module pymonetdb.sql.pythonize)

 	pymonetdb.control (module)

 	pymonetdb.exceptions (module)

 	pymonetdb.filetransfer (module)

 	pymonetdb.mapi (module)

 	pymonetdb.sql.monetize (module)

 	pymonetdb.sql.pythonize (module)

R

 	
 	release() (pymonetdb.control.Control method)

 	rename() (pymonetdb.control.Control method)

 	
 	replysize (pymonetdb.sql.connections.Connection attribute)

 	(pymonetdb.sql.cursors.Cursor attribute)

 	rollback() (pymonetdb.sql.connections.Connection method)

S

 	
 	SafeDirectoryHandler (class in pymonetdb.filetransfer)

 	scroll() (pymonetdb.sql.cursors.Cursor method)

 	send_error() (pymonetdb.filetransfer.Download method)

 	(pymonetdb.filetransfer.Upload method)

 	set() (pymonetdb.control.Control method)

 	set_autocommit() (pymonetdb.sql.connections.Connection method)

 	set_binary() (pymonetdb.sql.connections.Connection method)

 	(pymonetdb.sql.cursors.Cursor method)

 	set_chunk_size() (pymonetdb.filetransfer.Upload method)

 	set_downloader() (pymonetdb.mapi.Connection method)

 	(pymonetdb.sql.connections.Connection method)

 	set_maxprefetch() (pymonetdb.sql.connections.Connection method)

 	(pymonetdb.sql.cursors.Cursor method)

 	
 	set_reply_size() (pymonetdb.mapi.Connection method)

 	set_replysize() (pymonetdb.sql.connections.Connection method)

 	(pymonetdb.sql.cursors.Cursor method)

 	set_sizeheader() (pymonetdb.sql.connections.Connection method)

 	set_timezone() (pymonetdb.sql.connections.Connection method)

 	set_uploader() (pymonetdb.mapi.Connection method)

 	(pymonetdb.sql.connections.Connection method)

 	setinputsizes() (pymonetdb.sql.cursors.Cursor method)

 	setoutputsize() (pymonetdb.sql.cursors.Cursor method)

 	settimeout() (pymonetdb.sql.connections.Connection method)

 	start() (pymonetdb.control.Control method)

 	status() (pymonetdb.control.Control method)

 	stop() (pymonetdb.control.Control method)

 	strip() (in module pymonetdb.sql.pythonize)

T

 	
 	text_reader() (pymonetdb.filetransfer.Download method)

 	text_writer() (pymonetdb.filetransfer.Upload method)

 	TimeFromTicks() (in module pymonetdb.sql.pythonize)

 	
 	TimestampFromTicks() (in module pymonetdb.sql.pythonize)

 	TimestampTzFromTicks() (in module pymonetdb.sql.pythonize)

 	TimeTzFromTicks() (in module pymonetdb.sql.pythonize)

U

 	
 	Upload (class in pymonetdb.filetransfer)

 	
 	Uploader (class in pymonetdb.filetransfer)

 	used_binary_protocol() (pymonetdb.sql.cursors.Cursor method)

W

 	
 	Warning

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 The MonetDB Python API

 		
 Getting Started

 		
 Installation

 		
 Connecting

 		
 Examples

 		
 Example session

 		
 MAPI Connection

 		
 CSV Upload

 		
 File Transfers

 		
 Make up data as you go

 		
 Skip amount

 		
 Cancellation

 		
 Copying data from or to a file-like object

 		
 Security considerations

 		
 Result set batch size

 		
 Batching behavior

 		
 New result set format

 		
 Tweaking the behavior

 		
 Arraysize

 		
 API

 		
 Basic SQL usage

 		
 Type conversion

 		
 MAPI

 		
 File Uploads and Downloads

 		
 MonetDB remote control

 		
 pymonetdb Exceptions

 		
 Development

 		
 Github

 		
 Test suite

 		
 Prepare test databases

 		
 Run tests

 		
 Environment variables

_static/up-pressed.png

_static/up.png

